
Alexander FernÃ;ndez De La Torre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463770/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent prevalence of supramolecular architectures of novel ultrasonically synthesized hydrazones due to hydrogen bonding [X–H⋯O; X=N]: Experimental and density functional theory analyses. Journal of Physics and Chemistry of Solids, 2021, 148, 109679.	4.0	53
2	Synthesis of <i>N</i> -alkylated lipopeptides and their application as organocatalysts in asymmetric Michael addition in aqueous environments. New Journal of Chemistry, 2021, 45, 14050-14057.	2.8	4
3	Direct access to tetrasubstituted cyclopentenyl scaffolds through a diastereoselective isocyanide-based multicomponent reaction. Chemical Science, 2021, 12, 15862-15869.	7.4	2
4	Novel 2â€Pyrazolinâ€5â€one Derivative through Unforeseen Orthoamide Intermediate: Mechanistic Insights on Isocyanide Based [4+1] Cycloaddition. ChemistrySelect, 2021, 6, 6690-6697.	1.5	1
5	Facile Synthesis of Diversely Functionalized Peptoids, Spectroscopic Characterization, and DFT-Based Nonlinear Optical Exploration. ACS Omega, 2021, 6, 26016-26025.	3.5	14
6	Valorization of food waste to produce intelligent nanofibrous β-chitin films. International Journal of Biological Macromolecules, 2021, 186, 92-99.	7.5	5
7	One-pot organocatalytic/multicomponent approach for the preparation of novel enantioenriched non-natural selenium-based peptoids and peptide–peptoid conjugates. Molecular Diversity, 2020, 24, 1-10.	3.9	8
8	Synthesis, trypanocidal and anti-leishmania activity of new triazole-lapachol and nor-lapachol hybrids. Bioorganic Chemistry, 2020, 103, 104122.	4.1	10
9	Development of eco-friendly polyurethane foams based on Lesquerella fendleri (A. Grey) oil-based polyol. European Polymer Journal, 2020, 128, 109606.	5.4	17
10	Facile Synthesis, Spectral (IR, Mass, UVâ^'Vis, NMR), Linear and Nonlinear Investigation of the Novel Phosphonate Compounds: A Combined Experimental and Simulation Study. ChemistrySelect, 2020, 5, 2994-3006.	1.5	29
11	Spectroscopic and DFT/TDDFT insights of the novel phosphonate imine compounds. Journal of Molecular Structure, 2020, 1207, 127838.	3.6	15
12	Synthesis and Cytotoxic Analysis of Novel Myrtenyl Grafted Pseudo-Peptides Revealed Potential Candidates for Anticancer Therapy. Molecules, 2020, 25, 1911.	3.8	6
13	A study of the cis–trans isomerization preference of N-alkylated peptides containing phosphorus in the side chain and backbone. New Journal of Chemistry, 2019, 43, 12804-12813.	2.8	10
14	A stereoselective sequential organocascade and multicomponent approach for the preparation of tetrahydropyridines and chimeric derivatives. Chemical Communications, 2019, 55, 286-289.	4.1	15
15	Ugi reaction-derived prolyl peptide catalysts grafted on the renewable polymer polyfurfuryl alcohol for applications in heterogeneous enamine catalysis. Beilstein Journal of Organic Chemistry, 2019, 15, 1210-1216.	2.2	4
16	Rationalizing the stability and interactions of 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-hydroxy-3,5-dinitrobenzoate salt. Journal of Molecular Structure, 2019, 1193, 185-194.	3.6	60
17	Structural Requirements of N-alpha-Mercaptoacetyl Dipeptide (NAMdP) Inhibitors of Pseudomonas Aeruginosa Virulence Factor LasB: 3D-QSAR, Molecular Docking, and Interaction Fingerprint Studies. International Journal of Molecular Sciences, 2019, 20, 6133.	4.1	11
18	Synthesis of diN-Substituted Glycyl-Phenylalanine Derivatives by Using Ugi Four Component Reaction and Their Potential as Acetylcholinesterase Inhibitors. Molecules, 2019, 24, 189.	3.8	1

Alexander FernÄindez De La

#	Article	IF	CITATIONS
19	An efficient cyclization of lapachol to new benzo[<i>h</i>]chromene hybrid compounds: a stepwise <i>vs.</i> one-pot esterification-click (CuAAC) study. New Journal of Chemistry, 2018, 42, 19591-19599.	2.8	4
20	Preparation of Renewable Bio-Polyols from Two Species of Colliguaja for Rigid Polyurethane Foams. Materials, 2018, 11, 2244.	2.9	17
21	Multicomponent Synthesis of Cyclic Depsipeptide Mimics by Ugi Reaction Including Cyclic Hemiacetals Derived from Asymmetric Organocatalysis. Journal of Organic Chemistry, 2016, 81, 803-809.	3.2	24
22	Highly Stereoselective Synthesis of Naturalâ€Productâ€Like Hybrids by an Organocatalytic/Multicomponent Reaction Sequence. Angewandte Chemie - International Edition, 2015, 54, 7621-7625.	13.8	48
23	Polyethylene glycol (PEG) as a reusable solvent medium for an asymmetric organocatalytic Michael addition. Application to the synthesis of bioactive compounds. Green Chemistry, 2014, 16, 3169-3174.	9.0	44
24	Multicomponent Approach to Silicaâ€Grafted Peptide Catalysts: A 3 D Continuousâ€Flow Organocatalytic System with Onâ€line Monitoring of Conversion and Stereoselectivity. ChemCatChem, 2014, 6, 3208-3214.	3.7	24
25	Multicomponent Combinatorial Development and Conformational Analysis of Prolyl Peptide–Peptoid Hybrid Catalysts: Application in the Direct Asymmetric Michael Addition. Journal of Organic Chemistry, 2013, 78, 10221-10232.	3.2	40
26	Basic-functionalized recyclable ionic liquid catalyst: A solvent-free approach for Michael addition of 1,3-dicarbonyl compounds to nitroalkenes under ultrasound irradiation. Ultrasonics Sonochemistry, 2013, 20, 793-798.	8.2	27
27	Ugi and Passerini reactions enable the incorporation of ΔAA into N-alkylated peptides and depsipeptides. New Journal of Chemistry, 0, , .	2.8	0