James E Ferrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463672/publications.pdf Version: 2024-02-01

IAMES F FEDDELL

#	Article	IF	CITATIONS
1	Bistable, Biphasic Regulation of PP2A-B55 Accounts for the Dynamics of Mitotic Substrate Phosphorylation. Current Biology, 2021, 31, 794-808.e6.	1.8	25
2	Xenopus laevis Egg Extract Preparation and Live Imaging Methods for Visualizing Dynamic Cytoplasmic Organization. Journal of Visualized Experiments, 2021, , .	0.2	3
3	C. elegans colony formation as a condensation phenomenon. Nature Communications, 2021, 12, 4947.	5.8	7
4	Stepwise oxidations play key roles in the structural and functional regulations of DJ-1. Biochemical Journal, 2021, 478, 3505-3525.	1.7	7
5	Real-Time Monitoring of APC/C-Mediated Substrate Degradation Using Xenopus laevis Egg Extracts. Methods in Molecular Biology, 2021, 2329, 29-38.	0.4	2
6	The Apparent Requirement for Protein Synthesis during G2 Phase Is due to Checkpoint Activation. Cell Reports, 2020, 32, 107901.	2.9	19
7	The nucleus serves as the pacemaker for the cell cycle. ELife, 2020, 9, .	2.8	29
8	Spontaneous emergence of cell-like organization in <i>Xenopus</i> egg extracts. Science, 2019, 366, 631-637.	6.0	60
9	Efficient Front-Rear Coupling in Neutrophil Chemotaxis by Dynamic Myosin II Localization. Developmental Cell, 2019, 49, 189-205.e6.	3.1	59
10	A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science, 2019, 364, .	6.0	33
11	Disruption of Telomerase RNA Maturation Kinetics Precipitates Disease. Molecular Cell, 2019, 74, 688-700.e3.	4.5	43
12	Apoptosis propagates through the cytoplasm as trigger waves. Science, 2018, 361, 607-612.	6.0	113
13	Robustly Cycling <i>Xenopus laevis</i> Cell-Free Extracts in Teflon Chambers. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot097212.	0.2	11
14	The Temporal Ordering of Cell-Cycle Phosphorylation. Molecular Cell, 2017, 65, 371-373.	4.5	17
15	Desynchronizing Embryonic Cell Division Waves Reveals the Robustness of Xenopus laevis Development. Cell Reports, 2017, 21, 37-46.	2.9	38
16	Calcium Ion Induced Structural Changes Promote Dimerization of Secretagogin, Which Is Required for Its Insulin Secretory Function. Scientific Reports, 2017, 7, 6976.	1.6	16
17	The Prozone Effect Accounts for the Paradoxical Function of the Cdk-Binding Protein Suc1/Cks. Cell Reports, 2016, 14, 1408-1421.	2.9	10
18	Perfect and Near-Perfect Adaptation in Cell Signaling. Cell Systems, 2016, 2, 62-67.	2.9	139

JAMES E FERRELL

#	Article	IF	CITATIONS
19	How Does the Xenopus laevis Embryonic Cell Cycle Avoid Spatial Chaos?. Cell Reports, 2015, 12, 892-900.	2.9	18
20	Changes in Oscillatory Dynamics in the Cell Cycle of Early Xenopus laevis Embryos. PLoS Biology, 2014, 12, e1001788.	2.6	74
21	Spatial trigger waves: positive feedback gets you a long way. Molecular Biology of the Cell, 2014, 25, 3486-3493.	0.9	99
22	Ultrasensitivity part III: cascades, bistable switches, and oscillators. Trends in Biochemical Sciences, 2014, 39, 612-618.	3.7	156
23	Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback. Trends in Biochemical Sciences, 2014, 39, 556-569.	3.7	186
24	Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends in Biochemical Sciences, 2014, 39, 496-503.	3.7	180
25	Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle. Current Opinion in Cell Biology, 2013, 25, 676-686.	2.6	74
26	Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature, 2013, 500, 603-607.	13.7	157
27	Spatial Positive Feedback at the Onset of Mitosis. Cell, 2012, 149, 1500-1513.	13.5	122
28	Dora B. Goldstein 1922–2011. Addiction, 2012, 107, 1013-1014.	1.7	0
29	Bistability, Bifurcations, and Waddington's Epigenetic Landscape. Current Biology, 2012, 22, R458-R466.	1.8	289
30	Modeling the Cell Cycle: Why Do Certain Circuits Oscillate?. Cell, 2011, 144, 874-885.	13.5	302
31	Simple Rules for Complex Processes: New Lessons from the Budding Yeast Cell Cycle. Molecular Cell, 2011, 43, 497-500.	4.5	14
32	The Roles of Cyclin A2, B1, and B2 in Early and Late Mitotic Events. Molecular Biology of the Cell, 2010, 21, 3149-3161.	0.9	150
33	Simple, realistic models of complex biological processes: Positive feedback and bistability in a cell fate switch and a cell cycle oscillator. FEBS Letters, 2009, 583, 3999-4005.	1.3	129
34	Q&A: Cooperativity. Journal of Biology, 2009, 8, 53.	2.7	55
35	Signaling Motifs and Weber's Law. Molecular Cell, 2009, 36, 724-727.	4.5	47
36	Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops.	6.0	602

JAMES E FERRELL

#	Article	IF	CITATIONS
37	Cyclin A2 Regulates Nuclear-Envelope Breakdown and the Nuclear Accumulation of Cyclin B1. Current Biology, 2007, 17, 85-91.	1.8	132
38	Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biology, 2003, 5, 346-351.	4.6	676
39	Enforced Proximity in the Function of a Famous Scaffold. Molecular Cell, 2003, 11, 289-291.	4.5	20
40	Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Current Opinion in Cell Biology, 2002, 14, 140-148.	2.6	1,023
41	Six steps to destruction. Nature, 2001, 414, 498-499.	13.7	7
42	Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. Chaos, 2001, 11, 227.	1.0	318
43	Distinct, Constitutively Active MAPK Phosphatases Function in <i>Xenopus</i> Oocytes: Implications for p42 MAPK Regulation In Vivo. Molecular Biology of the Cell, 1999, 10, 3729-3743.	0.9	41
44	The Protein Kinase p90 Rsk as an Essential Mediator of Cytostatic Factor Activity. Science, 1999, 286, 1362-1365.	6.0	154
45	How regulated protein translocation can produce switch-like responses. Trends in Biochemical Sciences, 1998, 23, 461-465.	3.7	116