Yongbin Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946360/publications.pdf

Version: 2024-02-01

687220 677027 21 882 13 22 h-index citations g-index papers 22 22 22 1949 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Facile synthesis of nitrogen-doped foam-like carbon materials from purslane stem as efficient metal-free catalysts for oxidative coupling of amines to imines. Journal of Materials Science, 2021, 56, 6124-6134.	1.7	3
2	Nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation as metal-free catalysts for oxidative coupling of amines to imines. Journal of Materials Science, 2021, 56, 16865-16876.	1.7	2
3	Self-nitrogen-doped carbon materials derived from the petioles and blades of apricot leaves as metal-free catalysts for selective oxidation of aromatic alkanes. Carbon Letters, 2020, 30, 133-141.	3.3	3
4	Monolithic Ag-Cu2O/Ti-foam for the gas phase oxidation of alcohols: Synergistic effect between Ag and Cu2O. Catalysis Communications, 2020, 135, 105892.	1.6	6
5	Nitrogen, Sulfur Coâ€doped Carbon Materials Derived from the Leaf, Stem and Root of Amaranth as Metalâ€free Catalysts for Selective Oxidation of Aromatic Hydrocarbons. ChemCatChem, 2019, 11, 1010-1016.	1.8	5
6	Synergistic effect between Ag and Mn3O4 in the gas phase oxidation of alcohols. Catalysis Communications, 2018, 113, 15-18.	1.6	12
7	Nitrogen-doped hollow carbon spheres derived from amination reaction of fullerene with alkyl diamines as a carbon catalyst for hydrogenation of aromatic nitro compounds. Carbon, 2017, 125, 139-145.	5.4	30
8	Cu ₃ Pt ₁ â€"Cu ₂ O nanocomposites: synergistic effect-dependent high activity and stability for the gas-phase selective oxidation of alcohols. RSC Advances, 2017, 7, 54861-54865.	1.7	2
9	Nitrogen, Phosphorus, and Sulfur Coâ€Doped Hollow Carbon Shell as Superior Metalâ€Free Catalyst for Selective Oxidation of Aromatic Alkanes. Angewandte Chemie - International Edition, 2016, 55, 4016-4020.	7.2	250
10	Nitrogen, Phosphorus, and Sulfur Coâ€Doped Hollow Carbon Shell as Superior Metalâ€Free Catalyst for Selective Oxidation of Aromatic Alkanes. Angewandte Chemie, 2016, 128, 4084-4088.	1.6	64
11	Nanocarbon-based TEMPO as stable heterogeneous catalysts for partial oxidation of alcohols. Science Bulletin, 2016, 61, 772-777.	4.3	11
12	Hierarchical flowerlike magnesium oxide hollow spheres with extremely high surface area for adsorption and catalysis. Journal of Materials Chemistry A, 2016, 4, 400-406.	5.2	89
13	Spindle-shaped nanoscale yolk/shell magnetic stirring bars for heterogeneous catalysis in macro- and microscopic systems. Chemical Communications, 2016, 52, 1575-1578.	2.2	29
14	Highly Active and Stable Palladium Nanoparticles Encapsulated in a Mesoporous Silica Yolk–Shell Nanoreactor for Suzuki–Miyaura Reactions. ChemCatChem, 2015, 7, 2475-2479.	1.8	34
15	Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks. Nano Research, 2015, 8, 1339-1347.	5.8	30
16	Nanoscale Magnetic Stirring Bars for Heterogeneous Catalysis in Microscopic Systems. Angewandte Chemie, 2015, 127, 2699-2702.	1.6	26
17	Nanoscale Magnetic Stirring Bars for Heterogeneous Catalysis in Microscopic Systems. Angewandte Chemie - International Edition, 2015, 54, 2661-2664.	7.2	104
18	One-pot synthesis of sandwich-like reduced graphene oxide@CoNiAl layered double hydroxide with excellent pseudocapacitive properties. Journal of Materials Chemistry A, 2015, 3, 10858-10863.	5.2	64

YONGBIN SUN

#	Article	IF	CITATION
19	Sandwich-like porous TiO ₂ /reduced graphene oxide (rGO) for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 8701-8705.	5.2	38
20	Amines functionalized C60 as solid base catalysts for Knoevenagel condensation with high activity and stability. RSC Advances, 2015, 5, 86082-86087.	1.7	35
21	Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer. Journal of Materials Chemistry A, 2014, 2, 7706-7710.	5.2	44