
M Javad Aman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946341/publications.pdf Version: 2024-02-01

ΜΙΔυλή ΔΜΑΝ

#	Article	IF	CITATIONS
1	Hyperimmune Targeting Staphylococcal Toxins Effectively Protect Against USA 300 MRSA Infection in Mouse Bacteremia and Pneumonia Models. Frontiers in Immunology, 2022, 13, .	4.8	1
2	Atypical Ebola Virus Disease in a Nonhuman Primate following Monoclonal Antibody Treatment Is Associated with Glycoprotein Mutations within the Fusion Loop. MBio, 2021, 12, .	4.1	10
3	Safety and Immunogenicity of a 4-Component Toxoid-Based Staphylococcus aureus Vaccine in Rhesus Macaques. Frontiers in Immunology, 2021, 12, 621754.	4.8	4
4	Prominent Neutralizing Antibody Response Targeting the Ebolavirus Glycoprotein Subunit Interface Elicited by Immunization. Journal of Virology, 2021, 95, .	3.4	6
5	Therapy for Argentine hemorrhagic fever in nonhuman primates with a humanized monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
6	IBT-V02: A Multicomponent Toxoid Vaccine Protects Against Primary and Secondary Skin Infections Caused by Staphylococcus aureus. Frontiers in Immunology, 2021, 12, 624310.	4.8	17
7	The sphingosine kinase 1 activator, K6PC-5, attenuates Ebola virus infection. IScience, 2021, 24, 102266.	4.1	6
8	Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
9	<i>NCKAP1L</i> defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. Journal of Experimental Medicine, 2020, 217, .	8.5	48
10	Reduced-Beclin1-Expressing Mice Infected with Zika-R103451 and Viral-Associated Pathology during Pregnancy. Viruses, 2020, 12, 608.	3.3	7
11	Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathogens, 2019, 15, e1008061.	4.7	35
12	Extracellular Vesicles and Ebola Virus: A New Mechanism of Immune Evasion. Viruses, 2019, 11, 410.	3.3	27
13	TBA225, a fusion toxoid vaccine for protection and broad neutralization of staphylococcal superantigens. Scientific Reports, 2019, 9, 3279.	3.3	12
14	Post-exposure immunotherapy for two ebolaviruses and Marburg virus in nonhuman primates. Nature Communications, 2019, 10, 105.	12.8	45
15	Structural basis for broad neutralization of ebolavirusesÂby an antibody targeting the glycoprotein fusion loop. Nature Communications, 2018, 9, 3934.	12.8	25
16	Ebola Virus VP40 Modulates Cell Cycle and Biogenesis of Extracellular Vesicles. Journal of Infectious Diseases, 2018, 218, S365-S387.	4.0	40
17	Role of Antibodies in Protection Against Ebola Virus in Nonhuman Primates Immunized With Three Vaccine Platforms. Journal of Infectious Diseases, 2018, 218, S553-S564.	4.0	22
18	Integrated BioTherapeutics. Human Vaccines and Immunotherapeutics, 2018, 14, 1308-1310.	3.3	6

M JAVAD AMAN

#	Article	IF	CITATIONS
19	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	28.9	173
20	The Role of Exosomal VP40 in Ebola Virus Disease. DNA and Cell Biology, 2017, 36, 243-248.	1.9	35
21	Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus. Cell Reports, 2017, 19, 413-424.	6.4	66
22	Immunization-Elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability. Cell, 2017, 169, 891-904.e15.	28.9	103
23	Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction. Frontiers in Microbiology, 2016, 7, 1765.	3.5	62
24	Monoclonal antibody therapy for Junin virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4458-4463.	7.1	50
25	A "Trojan horse―bispecific-antibody strategy for broad protection against ebolaviruses. Science, 2016, 354, 350-354.	12.6	101
26	Safety and Immunogenicity of a Parenterally Administered, Structure-Based Rationally Modified Recombinant Staphylococcal Enterotoxin B Protein Vaccine, STEBVax. Vaccine Journal, 2016, 23, 918-925.	3.1	38
27	Protective efficacy of a novel alpha hemolysin subunit vaccine (AT62) against Staphylococcus aureus skin and soft tissue infections. Vaccine, 2016, 34, 6402-6407.	3.8	41
28	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	6.4	80
29	Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans. Antiviral Research, 2016, 126, 55-61.	4.1	11
30	Chasing Ebola through the Endosomal Labyrinth. MBio, 2016, 7, e00346.	4.1	10
31	Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein. Journal of Virology, 2016, 90, 279-291.	3.4	72
32	Homologous and Heterologous Protection of Nonhuman Primates by Ebola and Sudan Virus-Like Particles. PLoS ONE, 2015, 10, e0118881.	2.5	50
33	Antibodies to S. aureus LukS-PV Attenuated Subunit Vaccine Neutralize a Broad Spectrum of Canonical and Non-Canonical Bicomponent Leukotoxin Pairs. PLoS ONE, 2015, 10, e0137874.	2.5	26
34	Structurally Designed Attenuated Subunit Vaccines for S. aureus LukS-PV and LukF-PV Confer Protection in a Mouse Bacteremia Model. PLoS ONE, 2013, 8, e65384.	2.5	43
35	Novel Structurally Designed Vaccine for S. aureus α-Hemolysin: Protection against Bacteremia and Pneumonia. PLoS ONE, 2012, 7, e38567.	2.5	83
36	Lower Antibody Levels to Staphylococcus aureus Exotoxins Are Associated With Sepsis in Hospitalized Adults With Invasive S. aureus Infections. Journal of Infectious Diseases, 2012, 206, 915-923.	4.0	122

M JAVAD AMAN

#	Article	IF	CITATIONS
37	Advances in Virus-Like Particle Vaccines for Filoviruses. Journal of Infectious Diseases, 2011, 204, S1053-S1059.	4.0	51
38	Involvement of Vacuolar Protein Sorting Pathway in Ebola Virus Release Independent of TSG101 Interaction. Journal of Infectious Diseases, 2007, 196, S264-S270.	4.0	40
39	Filovirusâ€Like Particles Produced in Insect Cells: Immunogenicity and Protection in Rodents. Journal of Infectious Diseases, 2007, 196, S421-S429.	4.0	79
40	Ebola Virusâ€Like Particle–Based Vaccine Protects Nonhuman Primates against Lethal Ebola Virus Challenge. Journal of Infectious Diseases, 2007, 196, S430-S437.	4.0	236
41	Analysis of Ebola virus and VLP release using an immunocapture assay. Journal of Virological Methods, 2005, 127, 1-9.	2.1	43
42	Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine, 2005, 23, 3033-3042.	3.8	119
43	Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunology and Medical Microbiology, 2004, 40, 27-31.	2.7	113
44	Ebola virus-like particles protect from lethal Ebola virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15889-15894.	7.1	231
45	Lipid Raft Microdomains. Journal of Experimental Medicine, 2002, 195, 593-602.	8.5	419