LidÃ³n Gil-Escrig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463368/publications.pdf

Version: 2024-02-01

41 papers

4,087

28
h-index

276875 41 g-index

41 all docs

41 docs citations

41 times ranked

5543 citing authors

#	Article	IF	CITATIONS
1	Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by Vacuum Deposition. ACS Energy Letters, 2022, 7, 1355-1363.	17.4	24
2	Fully Vacuumâ€Processed Perovskite Solar Cells on Pyramidal Microtextures. Solar Rrl, 2021, 5, 2000553.	5.8	30
3	Assigning ionic properties in perovskite solar cells; a unifying transient simulation/experimental study. Sustainable Energy and Fuels, 2021, 5, 3578-3587.	4.9	6
4	Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition. ACS Energy Letters, 2021, 6, 827-836.	17.4	81
5	Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment. Solar Rrl, 2021, 5, 2100400.	5.8	5
6	Deposition Kinetics and Compositional Control of Vacuum-Processed CH ₃ NH ₃ Pbl ₃ Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 6852-6859.	4.6	43
7	Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39261-39272.	8.0	79
8	Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA _{1–<i>x</i>} MA _{<i>x</i>} Pbl ₃ . ACS Energy Letters, 2020, 5, 3053-3061.	17.4	49
9	Dual-source vacuum deposition of pure and mixed halide 2D perovskites: thin film characterization and processing guidelines. Journal of Materials Chemistry C, 2020, 8, 1902-1908.	5.5	15
10	Quantifying the Composition of Methylammonium Lead Iodide Perovskite Thin Films with Infrared Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 22083-22088.	3.1	5
11	Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness. ACS Applied Energy Materials, 2019, 2, 6280-6287.	5.1	110
12	Vacuum-Deposited 2D/3D Perovskite Heterojunctions. ACS Energy Letters, 2019, 4, 2893-2901.	17.4	77
13	Molecular Passivation of MoO ₃ : Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6945-6949.	6.7	43
14	Unravelling steady-state bulk recombination dynamics in thick efficient vacuum-deposited perovskite solar cells by transient methods. Journal of Materials Chemistry A, 2019, 7, 14712-14722.	10.3	31
15	Boosting inverted perovskite solar cell performance by using 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine as a dopant-free hole transporting material. Journal of Materials Chemistry A, 2019, 7, 12507-12517.	10.3	62
16	Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy and Environmental Science, 2019, 12, 3356-3369.	30.8	519
17	Effects of Masking on Open-Circuit Voltage and Fill Factor in Solar Cells. Joule, 2019, 3, 16-26.	24.0	64
18	Efficient Vacuum Deposited P-I-N Perovskite Solar Cells by Front Contact Optimization. Frontiers in Chemistry, 2019, 7, 936.	3.6	16

#	Article	IF	CITATIONS
19	Vacuum Deposited Tripleâ€Cation Mixedâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703506.	19.5	147
20	Fully Vacuum-Processed Wide Band Gap Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 214-219.	17.4	91
21	Influence of doped charge transport layers on efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2429-2434.	4.9	16
22	Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 424-430.	17.4	117
23	Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Solar Energy Materials and Solar Cells, 2017, 163, 237-241.	6.2	54
24	Efficient wide band gap double cation – double halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 3203-3207.	10.3	28
25	Improving Perovskite Solar Cells: Insights From a Validated Device Model. Advanced Energy Materials, 2017, 7, 1602432.	19.5	132
26	Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect lons. ACS Energy Letters, 2017, 2, 1214-1222.	17.4	826
27	Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells. Advanced Energy Materials, 2017, 7, 1602121.	19.5	255
28	Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy and Environmental Science, 2016, 9, 2286-2294.	30.8	102
29	Regioisomerism in cationic sulfonyl-substituted [Ir(C^N) ₂ (N^N)] ⁺ complexes: its influence on photophysical properties and LEC performance. Dalton Transactions, 2016, 45, 11668-11681.	3.3	21
30	Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy and Environmental Science, 2016, 9, 3456-3463.	30.8	410
31	Perovskite Luminescent Materials. Topics in Current Chemistry, 2016, 374, 52.	5.8	20
32	Interface engineering in efficient vacuum deposited perovskite solar cells. Organic Electronics, 2016, 37, 396-401.	2.6	19
33	Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite diodes. Journal of Materials Chemistry A, 2016, 4, 18614-18620.	10.3	19
34	Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 3667-3672.	10.3	48
35	Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bulletin, 2015, 40, 660-666.	3.5	58
36	Exceptionally long-lived light-emitting electrochemical cells: multiple intra-cation ï€-stacking interactions in [Ir(C^N) ₂ (N^N)][PF ₆] emitters. Chemical Science, 2015, 6, 2843-2852.	7.4	79

#	Article	IF	CITATIONS
37	Self-absorption in a light-emitting electrochemical cell based on an ionic transition metal complex. Applied Physics Letters, 2015, 106, 103502.	3.3	17
38	Perovskite solar cells prepared by flash evaporation. Chemical Communications, 2015, 51, 7376-7378.	4.1	99
39	Mixed Iodide–Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 3743-3748.	4.6	100
40	Efficient photovoltaic and electroluminescent perovskite devices. Chemical Communications, 2015, 51, 569-571.	4.1	110
41	Fluorine-free blue-green emitters for light-emitting electrochemical cells. Journal of Materials Chemistry C, 2014, 2, 5793-5804.	5.5	60