Jürgen Gräfenstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463309/publications.pdf

Version: 2024-02-01

62 3,625 papers citations

34 h-index 60 g-index

62 all docs 62 docs citations

62 times ranked 2846 citing authors

#	Article	IF	CITATIONS
1	Nuclear magnetic resonance spin–spin coupling constants from coupled perturbed density functional theory. Journal of Chemical Physics, 2000, 113, 3530-3547.	3.0	311
2	An Accurate Description of the Bergman Reaction Using Restricted and Unrestricted DFT: Stability Test, Spin Density, and On-Top Pair Densityâ€. Journal of Physical Chemistry A, 2000, 104, 1748-1761.	2.5	250
3	Can Unrestricted Density-Functional Theory Describe Open Shell Singlet Biradicals?. International Journal of Molecular Sciences, 2002, 3, 360-394.	4.1	182
4	Symmetric Halogen Bonding Is Preferred in Solution. Journal of the American Chemical Society, 2012, 134, 5706-5715.	13.7	159
5	The impact of the self-interaction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits. Journal of Chemical Physics, 2004, 120, 524-539.	3.0	141
6	The combination of density functional theory with multi-configuration methods – CAS-DFT. Chemical Physics Letters, 2000, 316, 569-577.	2.6	139
7	Can density functional theory describe multi-reference systems? Investigation of carbenes and organic biradicals. Physical Chemistry Chemical Physics, 2000, 2, 2091-2103.	2.8	135
8	Development of a CAS-DFT method covering non-dynamical and dynamical electron correlation in a balanced way. Molecular Physics, 2005, 103, 279-308.	1.7	109
9	Effect of the self-interaction error for three-electron bonds: On the development of new exchange-correlation functionals. Physical Chemistry Chemical Physics, 2004, 6, 1096-1112.	2.8	107
10	Density functional theory for open-shell singlet biradicals. Chemical Physics Letters, 1998, 288, 593-602.	2.6	103
11	Counterion influence on the N–l–N halogen bond. Chemical Science, 2015, 6, 3746-3756.	7.4	100
12	An efficient algorithm for the density-functional theory treatment of dispersion interactions. Journal of Chemical Physics, 2009, 130, 124105.	3.0	98
13	Calculation and analysis of NMR spin–spin coupling constants. Physical Chemistry Chemical Physics, 2007, 9, 2791-2816.	2.8	95
14	On the diagnostic value of (Ŝ2) in Kohn-Sham density functional theory. Molecular Physics, 2001, 99, 981-989.	1.7	89
15	Substituent Effects on the [N–l–N] ⁺ Halogen Bond. Journal of the American Chemical Society, 2016, 138, 9853-9863.	13.7	89
16	Long-range and short-range Coulomb correlation effects as simulated by Hartree-Fock, local density approximation, and generalized gradient approximation exchange functionals. Theoretical Chemistry Accounts, 2003, 109, 22-35.	1.4	81
17	Symmetry of [N–X–N] ⁺ halogen bonds in solution. Chemical Communications, 2012, 48, 1458-1460.	4.1	76
18	Andersen's force theorem and the local stress field. Physical Review B, 1996, 53, 7143-7146.	3.2	75

#	Article	IF	CITATIONS
19	Solvent effects on halogen bond symmetry. CrystEngComm, 2013, 15, 3087.	2.6	66
20	The nature of [N–Cl–N] ⁺ and [N–F–N] ⁺ halogen bonds in solution. Chemical Science, 2014, 5, 3226-3233.	7.4	66
21	Influence of the self-interaction error on the structure of the DFT exchange hole. Chemical Physics Letters, 2002, 352, 469-478.	2.6	65
22	Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation. Biochemistry, 2017, 56, 3265-3272.	2.5	65
23	Avoiding singularity problems associated with meta-GGA (generalized gradient approximation) exchange and correlation functionals containing the kinetic energy density. Journal of Chemical Physics, 2007, 127, 214103.	3.0	62
24	Quantum-mechanical stress and a generalized virial theorem for clusters and solids. Physical Review B, 1988, 37, 8167-8178.	3.2	59
25	Halogen Bond Asymmetry in Solution. Journal of the American Chemical Society, 2018, 140, 13503-13513.	13.7	57
26	What correlation effects are covered by density functional theory? Molecular Physics, 2000, 98, 1639-1658.	1.7	55
27	Efficient density-functional theory integrations by locally augmented radial grids. Journal of Chemical Physics, 2007, 127, 164113.	3.0	53
28	Carbon's Three-Center, Four-Electron Tetrel Bond, Treated Experimentally. Journal of the American Chemical Society, 2018, 140, 17571-17579.	13.7	53
29	Analysis of the Transmission Mechanism of NMR Spinâ°'Spin Coupling Constants Using Fermi Contact Spin Density Distribution, Partial Spin Polarization, and Orbital Currents:  XHn Molecules. Journal of Physical Chemistry A, 2003, 107, 7043-7056.	2.5	51
30	The self-interaction error and the description of non-dynamic electron correlation in density functional theory. Theoretical Chemistry Accounts, 2009, 123, 171-182.	1.4	51
31	Valence-band structure of group-IV semiconductors by means of local increments. Physical Review B, 1997, 55, 13588-13597.	3.2	43
32	4-Oxo-2,3,5,6-tetrafluorocyclohexa-2,5-dienylidene—A Highly Electrophilic Triplet Carbene. Chemistry - A European Journal, 2000, 6, 4567-4579.	3.3	43
33	Analysis of the NMR through-space coupling mechanism between 19F atoms. Chemical Physics Letters, 2004, 394, 5-13.	2.6	40
34	Computation of the valence band of diamond by means of local increments. Chemical Physics Letters, 1993, 215, 611-616.	2.6	37
35	Analysis of the NMR Spinâ^'Spin Coupling Mechanism Across a Hâ^'Bond:  Nature of the H-Bond in Proteins. Journal of Physical Chemistry B, 2004, 108, 1115-1129.	2.6	34
36	α,3-Didehydro-5-methyl-6-hydroxytoluene: Matrix Isolation of a Diradical Related to the Neocarzinostatin Chromophore. Journal of the American Chemical Society, 1998, 120, 8480-8485.	13.7	33

#	Article	IF	CITATIONS
37	Analysis of the paramagnetic spin–orbit transmission mechanism for NMR spin–spin coupling constants using the paramagnetic spin–orbit density distribution. Chemical Physics Letters, 2004, 383, 332-342.	2.6	33
38	Naphthalene Derivatives from the Roots of <i>Pentas parvifolia</i> and <i>Pentas bussei</i> Journal of Natural Products, 2016, 79, 2181-2187.	3.0	32
39	The ozone–acetylene reaction: concerted or non-concerted reaction mechanism? A quantum chemical investigation. Chemical Physics Letters, 2001, 347, 268-276.	2.6	25
40	The sup > 15 / sup > N NMR chemical shift in the characterization of weak halogen bonding in solution. Faraday Discussions, 2017, 203, 333-346.	3.2	25
41	Analysis of the spin-dipole transmission mechanism for NMR spin–spin coupling constants using orbital contributions, spin polarization, and spin-dipole energy density distribution. Chemical Physics Letters, 2004, 387, 415-427.	2.6	24
42	Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor–Bridge–Acceptor Systems. Journal of Physical Chemistry A, 2020, 124, 7219-7227.	2.5	20
43	Investigation of the Ï€ Character of a Câ^'C Bond with the Help of the Diamagnetic and Paramagnetic Spinâ^'Orbit Term of the NMR Spinâ^'Spin Coupling Constant. Journal of Physical Chemistry A, 2004, 108, 4520-4535.	2.5	18
44	Ab initioground-state correlation calculations for semiconductors with the local ansatz. Physical Review B, 1995, 51, 10556-10567.	3.2	17
45	Analysis of long-range NMR spin–spin coupling in polyenes and the π-mechanism. Physical Chemistry Chemical Physics, 2005, 7, 452-462.	2.8	17
46	Trimesitylsilylium cation verification of a free silylium cation in solution by NMR chemical shift calculations. Chemical Physics Letters, 1997, 279, 9-16.	2.6	16
47	Decomposition of nuclear magnetic resonance spin–spin coupling constants into active and passive orbital contributions. Journal of Chemical Physics, 2004, 120, 9952-9968.	3.0	16
48	Systematic strategy for decoding the NMR spin–spin coupling mechanism: the J-OC-PSP method. Magnetic Resonance in Chemistry, 2004, 42, S138-S157.	1.9	13
49	A computational study of the enantioselective addition of n-BuLi to benzaldehyde in the presence of a chiral lithium N,P amide. Organic and Biomolecular Chemistry, 2012, 10, 2807.	2.8	12
50	Aggregation and Solvation of Chiral N,Pâ€Amide Ligands in Coordinating Solvents: A Computational and NMR Spectroscopic Study. ChemPlusChem, 2012, 77, 799-806.	2.8	11
51	Local quantum mechanical stress in clusters and crystals. Physica Scripta, 1988, 37, 370-372.	2.5	10
52	Unusual long-range spin-spin coupling in fluorinated polyenes: A mechanistic analysis. Journal of Chemical Physics, 2007, 127, 174704.	3.0	10
53	One-electron versus electron–electron interaction contributions to the spin–spin coupling mechanism in nuclear magnetic resonance spectroscopy: Analysis of basic electronic effects. Journal of Chemical Physics, 2004, 121, 12217.	3.0	9
54	Elucidation of the Electronic Structure of Molecules with the Help of NMR Spinâ^Spin Coupling Constants:Â The FH Molecule. Journal of Physical Chemistry A, 2005, 109, 2325-2339.	2.5	9

#	Article	IF	CITATIONS
55	Comment on â€~â€~Stress field in quantum systems''. Physical Review B, 1990, 41, 3245-3247.	3.2	8
56	Efficient calculation of NMR isotopic shifts: Difference-dedicated vibrational perturbation theory. Journal of Chemical Physics, 2019, 151, 244120.	3.0	7
57	Sum rule for planar jellium surfaces treated within the Kohn-Sham local-density approximation. Physical Review B, 1992, 46, 1715-1718.	3.2	6
58	Calculated Fermi Surface Characteristics of the Noble Metals. Physica Status Solidi (B): Basic Research, 1988, 147, 575-582.	1.5	4
59	Anisotropic electron-impurity scattering rates of dilute noble-metal alloys: a comparison with surface state resonance data. Journal of Physics F: Metal Physics, 1988, 18, 731-743.	1.6	4
60	Photochemically Induced Aryl Azide Rearrangement: Solution NMR Spectroscopic Identification of the Rearrangement Product. Journal of Organic Chemistry, 2017, 82, 1812-1816.	3.2	3
61	The Structure of the "Vibration Hole―around an Isotopic Substitution—Implications for the Calculation of Nuclear Magnetic Resonance (NMR) Isotopic Shifts. Molecules, 2020, 25, 2915.	3.8	3
62	An Alternative Approach to Calculate the Hydrostatic Pressure in Solids. Physica Status Solidi (B): Basic Research, 1990, 158, K133.	1.5	1