Jin-hui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463133/publications.pdf

Version: 2024-02-01

304743 361022 40 1,222 22 35 citations h-index g-index papers 41 41 41 1361 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Ultrahighâ€Power Mesocarbon Microbeads Na ⁺ â€Diglyme Na ₃ V ₂ (PO ₄) ₃ Sodium″on Battery. Advanced Materials, 2022, 34, e2108304.	21.0	50
2	Deep Learning for Photonic Design and Analysis: Principles and Applications. Frontiers in Materials, 2022, 8, .	2.4	8
3	Twisted black phosphorus–based van der Waals stacks for fiber-integrated polarimeters. Science Advances, 2022, 8, eabo0375.	10.3	30
4	1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nature Communications, 2021, 12, 1973.	12.8	33
5	Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light: Science and Applications, 2021, 10, 78.	16.6	62
6	Ultra-compact reconfigurable device for mode conversion and dual-mode DPSK demodulation via inverse design. Optics Express, 2021, 29, 17718.	3.4	9
7	Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light: Science and Applications, 2021, 10, 128.	16.6	40
8	Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors, 2021, 21, 5262.	3.8	54
9	Microcavity Sensor Enhanced by Spontaneous Chiral Symmetry Breaking. Physical Review Applied, 2021, 16, .	3.8	3
10	Single Nanowire Integrated Microfiber Devices. Results in Optics, 2021, , 100199.	2.0	0
11	Total transmission from deep learning designs. Journal of Electronic Science and Technology, 2021, 20, 100146.	3.6	3
12	Packaged Microbubble Resonator for Versatile Optical Sensing. Journal of Lightwave Technology, 2020, 38, 4555-4559.	4.6	17
13	Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photonics Research, 2020, 8, 497.	7.0	34
14	Heterostructures: Broadband Optical-Fiber-Compatible Photodetector Based on a Graphene-MoS2 -WS2 Heterostructure with a Synergetic Photogenerating Mechanism (Adv. Electron. Mater. 1/2019). Advanced Electronic Materials, 2019, 5, 1970005.	5.1	3
15	Microcavity Nonlinear Optics with an Organically Functionalized Surface. Physical Review Letters, 2019, 123, 173902.	7.8	57
16	Optical Microfiber Sensors: Sensing Mechanisms, and Recent Advances. Journal of Lightwave Technology, 2019, 37, 2577-2589.	4.6	60
17	Broadband Opticalâ€Fiberâ€Compatible Photodetector Based on a Grapheneâ€MoS ₂ â€WS ₂ Heterostructure with a Synergetic Photogenerating Mechanism. Advanced Electronic Materials, 2019, 5, 1800562.	5.1	53
18	Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light: Science and Applications, 2019, 8, 8.	16.6	51

#	Article	IF	CITATIONS
19	Demonstration of a microelectromechanical tunable Fabry–Pérot cavity based on graphene-bonded fiber devices. Optics Letters, 2019, 44, 1876.	3.3	4
20	Ethanol Gas Sensor Based on a Hybrid Polymethyl Methacrylate–Silica Microfiber Coupler. Journal of Lightwave Technology, 2018, 36, 2031-2036.	4.6	26
21	Hollow core micro-fiber for optical wave guiding and microfluidic manipulation. Sensors and Actuators B: Chemical, 2018, 262, 953-957.	7.8	19
22	Sensitive and Wearable Optical Microfiber Sensor for Human Health Monitoring. Advanced Materials Technologies, 2018, 3, 1800296.	5.8	78
23	Quasi-Phase-Matching Method Based on Coupling Compensation for Surface Second-Harmonic Generation in Optical Fiber Nanowire Coupler. ACS Photonics, 2018, 5, 3916-3922.	6.6	5
24	Towards an all-in fiber photodetector by directly bonding few-layer molybdenum disulfide to a fiber facet. Nanoscale, 2017, 9, 3424-3428.	5.6	22
25	Manipulation of Nonlinear Optical Properties of Graphene Bonded Fiber Devices by Thermally Engineering Fermi–Dirac Distribution. Advanced Optical Materials, 2017, 5, 1700630.	7.3	9
26	High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr_3–graphene hybrid structure. Optica, 2017, 4, 835.	9.3	48
27	Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications. Optics Express, 2017, 25, 4326.	3.4	14
28	Versatile hybrid plasmonic microfiber knot resonator. Optics Letters, 2017, 42, 3395.	3.3	15
29	Mechanical Modulation of a Hybrid Graphene–Microfiber Structure. Advanced Optical Materials, 2016, 4, 853-857.	7.3	16
30	A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	3
31	Miniature optical fiber current sensor based on a graphene membrane. Laser and Photonics Reviews, 2015, 9, 517-522.	8.7	34
32	Miniaturized stereo fiber devices based on the wrapon-a-rod technology., 2015,,.		0
33	An all-optical modulator based on a stereo graphene–microfiber structure. Light: Science and Applications, 2015, 4, e360-e360.	16.6	124
34	Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Applied Physics Letters, 2015, 107, .	3.3	49
35	Microfiber-coupler-assisted control of wavelength tuning for Q-switched fiber laser with few-layer molybdenum disulfide nanoplates. Optics Letters, 2015, 40, 3576.	3.3	37
36	A Graphene-Integrated 3D Microfiber Coil For All-Optical Signal Processing. , 2015, , .		0

JIN-HUI CHEN

#	Article	IF	CITATION
37	Multifunctional optical nanofiber polarization devices with 3D geometry. Optics Express, 2014, 22, 17890.	3.4	16
38	Platform for enhanced light–graphene interaction length and miniaturizing fiber stereo devices. Optica, 2014, 1, 307.	9.3	36
39	Tunable Fano resonance in hybrid graphene-metal gratings. Applied Physics Letters, 2014, 104, .	3.3	49
40	Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching. Physical Review A, 2013, 88, .	2.5	51