
Lixiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946307/publications.pdf Version: 2024-02-01

LIVIANGLUU

#	Article	IF	CITATIONS
1	Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations. Advanced Functional Materials, 2020, 30, 1907218.	7.8	209
2	Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries. Journal of Power Sources, 2014, 245, 624-629.	4.0	127
3	Tunable Pseudocapacitance in 3D TiO _{2â^'δ} Nanomembranes Enabling Superior Lithium Storage Performance. ACS Nano, 2017, 11, 821-830.	7.3	124
4	General design of hollow porous CoFe ₂ O ₄ nanocubes from metal–organic frameworks with extraordinary lithium storage. Nanoscale, 2014, 6, 15168-15174.	2.8	122
5	Accurate hierarchical control of hollow crossed NiCo ₂ O ₄ nanocubes for superior lithium storage. Nanoscale, 2014, 6, 5491-5497.	2.8	95
6	Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries. Electrochimica Acta, 2013, 114, 42-47.	2.6	93
7	Efficient Sodium Storage in Rolledâ€Up Amorphous Si Nanomembranes. Advanced Materials, 2018, 30, e1706637.	11.1	87
8	Advances on Microsized Onâ€Chip Lithiumâ€lon Batteries. Small, 2017, 13, 1701847.	5.2	75
9	Self-assembled hierarchical yolk–shell structured NiO@C from metal–organic frameworks with outstanding performance for lithium storage. Chemical Communications, 2014, 50, 9485-9488.	2.2	59
10	On-chip 3D interdigital micro-supercapacitors with ultrahigh areal energy density. Energy Storage Materials, 2020, 27, 17-24.	9.5	54
11	Introducing Rolledâ€Up Nanotechnology for Advanced Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1600797.	10.2	49
12	3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li-O2 batteries. Energy Storage Materials, 2019, 16, 155-162.	9.5	49
13	Stamping Fabrication of Flexible Planar Micro‣upercapacitors Using Porous Graphene Inks. Advanced Science, 2020, 7, 2001561.	5.6	49
14	Designed hierarchical synthesis of ring-shaped Bi ₂ WO ₆ @CeO ₂ hybrid nanoparticle aggregates for photocatalytic detoxification of cyanide. Green Chemistry, 2014, 16, 2539-2545.	4.6	46
15	Designed hierarchical MnO ₂ microspheres assembled from nanofilms for removal of heavy metal ions. RSC Advances, 2014, 4, 14048-14054.	1.7	46
16	Morphology-controlled synthesis of cage-bell Pd@CeO2 structured nanoparticle aggregates as catalysts for the low-temperature oxidation of CO. Journal of Materials Chemistry A, 2013, 1, 7494.	5.2	41
17	Elucidating the reaction kinetics of lithium–sulfur batteries by <i>operando</i> XRD based on an open-hollow S@MnO ₂ cathode. Journal of Materials Chemistry A, 2019, 7, 6651-6658.	5.2	41
18	Hierarchical hollow Fe2O3@MIL-101(Fe)/C derived from metal-organic frameworks for superior sodium storage. Scientific Reports, 2016, 6, 25556.	1.6	40

LIXIANG LIU

#	Article	IF	CITATIONS
19	Shape-controlled synthesis of Ag@TiO2 cage-bell hybrid structure with enhanced photocatalytic activity and superior lithium storage. Green Chemistry, 2013, 15, 2810.	4.6	39
20	Selfâ€Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors. Advanced Science, 2019, 6, 1901051.	5.6	39
21	Core–shell TiO2 microsphere with enhanced photocatalytic activity and improved lithium storage. Journal of Solid State Chemistry, 2013, 201, 137-143.	1.4	38
22	Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery. Energy Storage Materials, 2018, 12, 23-29.	9.5	38
23	Controlled synthesis of hollow octahedral ZnCo ₂ O ₄ nanocages assembled from ultrathin 2D nanosheets for enhanced lithium storage. Nanoscale, 2017, 9, 17174-17180.	2.8	36
24	Hierarchical synthesis of Mo–Sn oxide cage-bell hybrid structures with superior lithium storage. Chemical Communications, 2014, 50, 673-675.	2.2	35
25	Battery-Everywhere Design Based on a Cathodeless Configuration with High Sustainability and Energy Density. ACS Energy Letters, 2021, 6, 1859-1868.	8.8	35
26	Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage. Scientific Reports, 2015, 5, 13310.	1.6	34
27	Reinforcing Germanium Electrode with Polymer Matrix Decoration for Long Cycle Life Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38556-38566.	4.0	29
28	Templateâ€Free Fabrication of Hollow NiO–Carbon Hybrid Nanoparticle Aggregates with Improved Lithium Storage. Particle and Particle Systems Characterization, 2014, 31, 374-381.	1.2	26
29	Towards high-performance microscale batteries: Configurations and optimization of electrode materials by in-situ analytical platforms. Energy Storage Materials, 2020, 29, 17-41.	9.5	25
30	Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 14097-14107.	5.2	21
31	PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 4836-4843.	5.2	21
32	Advanced architecture designs towards high-performance 3D microbatteries. Nano Materials Science, 2020, , .	3.9	18
33	Morphology-controlled synthesis of Ti3+ self-doped yolk–shell structure titanium oxide with superior photocatalytic activity under visible light. Journal of Solid State Chemistry, 2014, 213, 98-103.	1.4	14
34	Morphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2 nanocapsules with outstanding lithium storage. Scientific Reports, 2015, 5, 15252.	1.6	13
35	Hierarchical hollow TiO ₂ @CeO ₂ nanocube heterostructures for photocatalytic detoxification of cyanide. RSC Advances, 2015, 5, 11733-11737.	1.7	13
36	Decoding of Oxygen Network Distortion in a Layered High-Rate Anode by <i>In Situ</i> Investigation of a Single Microelectrode. ACS Nano, 2020, 14, 11753-11764.	7.3	10

#	Article	IF	CITATIONS
37	Stressâ€Actuated Spiral Microelectrode for Highâ€Performance Lithiumâ€Ion Microbatteries. Small, 2020, 16, e2002410.	5.2	8
38	A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit. Cell Reports Physical Science, 2021, 2, 100429.	2.8	7