List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463043/publications.pdf Version: 2024-02-01

	108046	116156
4,920	37	66
citations	h-index	g-index
113	113	5994
docs citations	times ranked	citing authors
	citations 113	4,92037citationsh-index113113

#	Article	IF	CITATIONS
1	Downregulation of Erythrocyte miR-210 Induces Endothelial Dysfunction in Type 2 Diabetes. Diabetes, 2022, 71, 285-297.	0.3	15
2	Mendelian randomization study on the causal effects of tumor necrosis factor inhibition on coronary artery disease and ischemic stroke among the general population. EBioMedicine, 2022, 76, 103824.	2.7	6
3	Erythrocytes Induce Vascular Dysfunction in COVID-19. JACC Basic To Translational Science, 2022, 7, 193-204.	1.9	26
4	Therapeutic Potential of Sunitinib in Ameliorating Endothelial Dysfunction in Type 2 Diabetic Rats. Pharmacology, 2022, 107, 160-166.	0.9	0
5	Downregulation of eNOS and preserved endothelial function in endothelial-specific arginase 1-deficient mice. Nitric Oxide - Biology and Chemistry, 2022, , .	1.2	4
6	Longâ€ŧerm effect of remote ischemic conditioning on infarct size and clinical outcomes in patients with anterior STâ€elevation myocardial infarction. Catheterization and Cardiovascular Interventions, 2021, 97, 386-392.	0.7	13
7	Ticagrelor: a cardiometabolic drug targeting erythrocyte-mediated purinergic signaling?. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H90-H94.	1.5	10
8	Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radical Biology and Medicine, 2021, 168, 95-109.	1.3	35
9	Human Cytomegalovirus Reduces Endothelin-1 Expression in Both Endothelial and Vascular Smooth Muscle Cells. Microorganisms, 2021, 9, 1137.	1.6	4
10	Arginase 1 is upregulated at admission in patients with STâ€elevation myocardial infarction. Journal of Internal Medicine, 2021, 290, 1061-1070.	2.7	5
11	Sunitinib and its effect in the cardiovascular system. Drug Discovery Today, 2021, 26, 1773-1775.	3.2	1
12	Influenza Vaccination After Myocardial Infarction: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Circulation, 2021, 144, 1476-1484.	1.6	121
13	MicroRNA: A mediator of diet-induced cardiovascular protection. Current Opinion in Pharmacology, 2021, 60, 183-192.	1.7	6
14	Biomarkers Predict In-Hospital Major Adverse Cardiac Events in COVID-19 Patients: A Multicenter International Study. Journal of Clinical Medicine, 2021, 10, 5863.	1.0	9
15	Oxygen therapy in suspected acute myocardial infarction and concurrent normoxemic chronic obstructive pulmonary disease: a prespecified subgroup analysis from the DETO2X-AMI trial. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 984-992.	0.4	8
16	A Model of Blood Component–Heart Interaction in Cardiac Ischemia–Reperfusion Injury using a Langendorff-Based Ex Vivo Assay. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 164-173.	1.0	4
17	Endothelin-1 increases expression and activity of arginase 2 via ETB receptors and is co-expressed with arginase 2 in human atherosclerotic plaques. Atherosclerosis, 2020, 292, 215-223.	0.4	18
18	The role of arginase in the microcirculation in cardiovascular disease. Clinical Hemorheology and Microcirculation, 2020, 74, 79-92.	0.9	10

#	Article	IF	CITATIONS
19	Improvement in endothelial function in cardiovascular disease - Is arginase the target?. International Journal of Cardiology, 2020, 301, 207-214.	0.8	37
20	Design and rationale of FLAVOUR: A phase IIa efficacy study of the 5-lipoxygenase activating protein antagonist AZD5718 in patients with recent myocardial infarction. Contemporary Clinical Trials Communications, 2020, 19, 100629.	0.5	8
21	Erythrocytes Induce Endothelial Injury in Type 2 Diabetes Through Alteration of Vascular Purinergic Signaling. Frontiers in Pharmacology, 2020, 11, 603226.	1.6	10
22	Red Blood Cell Peroxynitrite Causes Endothelial Dysfunction in Type 2 Diabetes Mellitus via Arginase. Cells, 2020, 9, 1712.	1.8	43
23	Hyperglycemia Induces Myocardial Dysfunction via Epigenetic Regulation of JunD. Circulation Research, 2020, 127, 1261-1273.	2.0	38
24	Regional protein expression changes within the left ventricle in a mouse model of dyssynchronous and resynchronized heart failure. ESC Heart Failure, 2020, 7, 4438-4442.	1.4	3
25	A randomized clinical trial of the effects of leafy green vegetables and inorganic nitrate on blood pressure. American Journal of Clinical Nutrition, 2020, 111, 749-756.	2.2	32
26	The effect of levosimendan on survival and cardiac performance in an ischemic cardiac arrest model – A blinded randomized placebo-controlled study in swine. Resuscitation, 2020, 150, 113-120.	1.3	6
27	The Effect of Glycemic Control on Endothelial and Cardiac Dysfunction Induced by Red Blood Cells in Type 2 Diabetes. Frontiers in Pharmacology, 2019, 10, 861.	1.6	24
28	Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovascular Research, 2019, 115, 1596-1605.	1.8	101
29	Hemoglobin β93 Cysteine Is Not Required for Export of Nitric Oxide Bioactivity From the Red Blood Cell. Circulation, 2019, 139, 2654-2663.	1.6	42
30	Contrast Enhancement and Image Quality Influence Two- and Three-dimensional Echocardiographic Determination of Left Ventricular Volumes: Comparison With Magnetic Resonance Imaging. Clinical Medicine Insights: Cardiology, 2019, 13, 117954681983198.	0.6	8
31	Smokeless tobacco, snus, at admission for percutaneous coronary intervention and future risk for cardiac events. Open Heart, 2019, 6, e001109.	0.9	1
32	Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 2019, 115, 1156-1166.	1.8	106
33	Uridine adenosine tetraphosphate and purinergic signaling in cardiovascular system: An update. Pharmacological Research, 2019, 141, 32-45.	3.1	26
34	Arginase Inhibition Improves Endothelial Function in an Age-Dependent Manner in Healthy Elderly Humans. Rejuvenation Research, 2019, 22, 385-389.	0.9	16
35	Remote ischemic conditioning protects against endothelial ischemia-reperfusion injury via a glucagon-like peptide-1 receptor-mediated mechanism in humans. International Journal of Cardiology, 2019, 274, 40-44.	0.8	14
36	ldentification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease. Redox Biology, 2018, 14, 328-337.	3.9	59

#	Article	IF	CITATIONS
37	Long-Term Effects of Oxygen Therapy on Death or Hospitalization for Heart Failure in Patients With Suspected Acute Myocardial Infarction. Circulation, 2018, 138, 2754-2762.	1.6	22
38	Altered Purinergic Receptor Sensitivity in Type 2 Diabetes-Associated Endothelial Dysfunction and Up4A-Mediated Vascular Contraction. International Journal of Molecular Sciences, 2018, 19, 3942.	1.8	15
39	Cardiac-Specific Overexpression of Oxytocin Receptor Leads to Cardiomyopathy in Mice. Journal of Cardiac Failure, 2018, 24, 470-478.	0.7	8
40	Erythrocytes From Patients With TypeÂ2ÂDiabetes Induce EndothelialÂDysfunction Via Arginase I. Journal of the American College of Cardiology, 2018, 72, 769-780.	1.2	123
41	Red Blood Cells in Type 2 Diabetes Impair Cardiac Post-Ischemic Recovery Through an Arginase-Dependent Modulation of Nitric Oxide Synthase and Reactive Oxygen Species. JACC Basic To Translational Science, 2018, 3, 450-463.	1.9	51
42	Erythrocytes and cardiovascular complications. Aging, 2018, 10, 3643-3644.	1.4	7
43	Reply to letter to the editor by Lou et al. American Heart Journal, 2017, 185, e2.	1.2	0
44	Design and rationale for the I nfluenza vaccination A fter M yocardial I nfarction (IAMI) trial. A registry-based randomized clinical trial. American Heart Journal, 2017, 189, 94-102.	1.2	39
45	Inhibition of Rho kinase protects from ischaemia–reperfusion injury via regulation of arginase activity and nitric oxide synthase in type 1 diabetes. Diabetes and Vascular Disease Research, 2017, 14, 236-245.	0.9	13
46	Reply to comment by Elbadawi et al. American Heart Journal, 2017, 187, e7-e8.	1.2	0
47	Multibiomarker analysis in patients with acute myocardial infarction. European Journal of Clinical Investigation, 2017, 47, 638-648.	1.7	56
48	Highâ€density lipoproteinâ€associated sphingosineâ€1â€phosphate activity in heterozygous familial hypercholesterolaemia. European Journal of Clinical Investigation, 2017, 47, 38-43.	1.7	3
49	Oxygen Therapy in Suspected Acute Myocardial Infarction. New England Journal of Medicine, 2017, 377, 1240-1249.	13.9	276
50	Arginase Inhibition Reverses Monocrotaline-Induced Pulmonary Hypertension. International Journal of Molecular Sciences, 2017, 18, 1609.	1.8	17
51	Effect of endothelinâ€1 and endothelin receptor blockade on the release of microparticles. European Journal of Clinical Investigation, 2016, 46, 707-713.	1.7	8
52	Uridine adenosine tetraphosphate acts as a proangiogenic factor in vitro through purinergic P2Y receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H299-H309.	1.5	16
53	Dietary nitrate improves cardiac contractility via enhanced cellular Ca2+ signaling. Basic Research in Cardiology, 2016, 111, 34.	2.5	22
54	Effect of remote ischemic conditioning on infarct size in patients with anterior ST-elevation myocardial infarction. American Heart Journal, 2016, 181, 66-73.	1.2	57

#	Article	IF	CITATIONS
55	Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovascular Research, 2016, 112, 669-676.	1.8	81
56	Arginase Inhibition Improves Microvascular Endothelial Function in Patients With Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3952-3958.	1.8	60
57	Amino acid metabolism reflecting arginase activity is increased in patients with type 2 diabetes and associated with endothelial dysfunction. Diabetes and Vascular Disease Research, 2016, 13, 354-360.	0.9	47
58	Automatic segmentation of myocardium at risk from contrast enhanced SSFP CMR: validation against expert readers and SPECT. BMC Medical Imaging, 2016, 16, 19.	1.4	11
59	Quantification of myocardium at risk in ST- elevation myocardial infarction: a comparison of contrast-enhanced steady-state free precession cine cardiovascular magnetic resonance with coronary angiographic jeopardy scores. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 55.	1.6	4
60	The Emerging Role of Arginase in Endothelial Dysfunction in Diabetes. Current Vascular Pharmacology, 2016, 14, 155-162.	0.8	38
61	Human Cytomegalovirus Up-Regulates Endothelin Receptor Type B: Implication for Vasculopathies?. Open Forum Infectious Diseases, 2015, 2, ofv155.	0.4	7
62	High-Dose Simvastatin Exhibits Enhanced Lipid-Lowering Effects Relative to Simvastatin/Ezetimibe Combination Therapy. Circulation: Cardiovascular Genetics, 2014, 7, 955-964.	5.1	13
63	Increased arginase levels contribute to impaired perfusion after cardiopulmonary resuscitation. European Journal of Clinical Investigation, 2014, 44, 965-971.	1.7	18
64	Increased levels of circulating arginase I in overweight compared to normal weight adolescents. Pediatric Diabetes, 2014, 15, 51-56.	1.2	14
65	Selective endothelin ETA and dual ETA/ETB receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. Life Sciences, 2014, 118, 435-439.	2.0	16
66	Effect of Arginase Inhibition on Ischemia-Reperfusion Injury in Patients with Coronary Artery Disease with and without Diabetes Mellitus. PLoS ONE, 2014, 9, e103260.	1.1	45
67	The Role of Arginase and Rho Kinase in Cardioprotection from Remote Ischemic Perconditioning in Non-Diabetic and Diabetic Rat In Vivo. PLoS ONE, 2014, 9, e104731.	1.1	23
68	Arginase as a target for treatment of myocardial ischemia-reperfusion injury. European Journal of Pharmacology, 2013, 720, 121-123.	1.7	20
69	Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal?. Cardiovascular Research, 2013, 98, 334-343.	1.8	245
70	Arginase inhibition reduces infarct size via nitric oxide, protein kinase C epsilon and mitochondrial ATP-dependent K+ channels. European Journal of Pharmacology, 2013, 712, 16-21.	1.7	25
71	Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15049-15054.	3.3	125
72	Myocardium at risk by magnetic resonance imaging: head-to-head comparison of T2-weighted imaging and contrast-enhanced steady-state free precession. European Heart Journal Cardiovascular Imaging, 2012, 13, 1008-1015.	0.5	34

#	Article	IF	CITATIONS
73	Arginase Inhibition Improves Endothelial Function in Patients With Coronary Artery Disease and Type 2 Diabetes Mellitus. Circulation, 2012, 126, 2943-2950.	1.6	168
74	New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sciences, 2012, 91, 507-516.	2.0	114
75	Local Arginase Inhibition during Early Reperfusion Mediates Cardioprotection via Increased Nitric Oxide Production. PLoS ONE, 2012, 7, e42038.	1.1	60
76	Endothelin-1 Reduces Glucose Uptake in Human Skeletal Muscle In Vivo and In Vitro. Diabetes, 2011, 60, 2061-2067.	0.3	41
77	Arginase inhibition restores in vivo coronary microvascular function in type 2 diabetic rats. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1174-H1181.	1.5	65
78	Assessment of myocardium at risk with contrast enhanced steady-state free precession cine cardiovascular magnetic resonance compared to single-photon emission computed tomography. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 25.	1.6	67
79	Regulation of Glucose Uptake by Endothelin-1 in Human Skeletal Muscle <i>in Vivo</i> and <i>in Vitro</i> . Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2359-2366.	1.8	35
80	Arginase inhibition mediates cardioprotection during ischaemia-reperfusion. Cardiovascular Research, 2010, 85, 147-154.	1.8	120
81	Intracoronary endothelin receptor blockade improves endothelial function in patients with coronary artery disease. Canadian Journal of Physiology and Pharmacology, 2008, 86, 745-751.	0.7	15
82	Improved Peripheral Perfusion During Endothelin-A Receptor Blockade in Patients With Type 2 Diabetes and Critical Limb Ischemia. Diabetes Care, 2008, 31, e56-e56.	4.3	15
83	Endothelin-A Receptor Blockade Increases Nutritive Skin Capillary Circulation in Patients with Type 2 Diabetes and Microangiopathy. Journal of Vascular Research, 2008, 45, 295-302.	0.6	36
84	Cholesterol lowering is more important than pleiotropic effects of statins for endothelial function in patients with dysglycaemia and coronary artery disease. European Heart Journal, 2008, 29, 1753-1760.	1.0	87
85	Dual Endothelin Receptor Blockade Acutely Improves Insulin Sensitivity in Obese Patients With Insulin Resistance and Coronary Artery Disease. Diabetes Care, 2007, 30, 591-596.	4.3	48
86	The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovascular Research, 2007, 76, 8-18.	1.8	381
87	Vitamin C blocks vascular dysfunction and release of interleukin-6 induced by endothelin-1 in humans in vivo. Atherosclerosis, 2007, 190, 408-415.	0.4	54
88	Enhanced Endothelium-dependent Vasodilatation by Dual Endothelin Receptor Blockade in Individuals With Insulin Resistance. Journal of Cardiovascular Pharmacology, 2006, 47, 385-390.	0.8	47
89	The endothelin-1 receptor antagonist bosentan protects against ischaemia/reperfusion-induced endothelial dysfunction in humans. Clinical Science, 2005, 108, 357-363.	1.8	21
90	Nitric oxide mediates protective effect of endothelin receptor antagonism during myocardial ischemia and reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1767-H1774.	1.5	35

#	Article	IF	CITATIONS
91	Endothelin in coronary artery disease. Scandinavian Cardiovascular Journal, 2004, 38, 257-258.	0.4	3
92	ETA receptors mediate vasoconstriction, whereas ETB receptors clear endothelin-1 in the splanchnic and renal circulation of healthy men. Clinical Science, 2003, 104, 143-151.	1.8	28
93	L-Arginine protects from ischemia-reperfusion-induced endothelial dysfunction in humans in vivo. Journal of Applied Physiology, 2003, 95, 2218-2222.	1.2	35
94	Combined Endothelin Receptor Blockade Evokes Enhanced Vasodilatation in Patients With Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 674-679.	1.1	57
95	Endothelin-1 inhibits endothelium-dependent vasodilatation in the human forearm: reversal by ETA receptor blockade in patients with atherosclerosis. Clinical Science, 2002, 102, 321-327.	1.8	49
96	Endothelin-1 inhibits endothelium-dependent vasodilatation in the human forearm: reversal by ETA receptor blockade in patients with atherosclerosis. Clinical Science, 2002, 102, 321.	1.8	17
97	Endothelin: what does it tell us about myocardial and endothelial dysfunction?. , 2002, , 365-373.		0
98	Enhanced vasoconstrictor effect of big endothelin-1 in patients with atherosclerosis: relation to conversion to endothelin-1. Atherosclerosis, 2002, 160, 215-222.	0.4	30
99	Involvement of nitric oxide in cardioprotective effect of endothelin receptor antagonist during ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1105-H1112.	1.5	37
100	Limitation of infarct size and attenuation of myeloperoxidase activity by an endothelin A receptor antagonist following ischaemia and reperfusion. Basic Research in Cardiology, 2001, 96, 454-462.	2.5	34
101	Endothelial dysfunction in atherosclerotic mice: improved relaxation by combined supplementation with L -arginine-tetrahydrobiopterin and enhanced vasoconstriction by endothelin. British Journal of Pharmacology, 2000, 131, 1255-1261.	2.7	38
102	Postexercise Ischemia Is Associated With Increased Neuropeptide Y in Patients With Coronary Artery Disease. Circulation, 2000, 102, 987-993.	1.6	38
103	Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. British Journal of Pharmacology, 1999, 128, 637-646.	2.7	22
104	Neuropeptide Y and Sympathetic Neurotransmission. Annals of the New York Academy of Sciences, 1990, 611, 166-174.	1.8	110
105	Actions of constrictor (NPY and endothelin) and dilator (substance P, CGRP and VIP) peptides on pig splenic and human skeletal muscle arteries: involvement of the endothelium. British Journal of Pharmacology, 1989, 97, 983-989.	2.7	67
106	Neuropeptide Y and reserpineâ€resistant vasoconstriction evoked by sympathetic nerve stimulation in the dog skeletal muscle. British Journal of Pharmacology, 1988, 94, 952-960.	2.7	31
107	Noradrenaline release evoked by a physiological irregular sympathetic discharge pattern is modulated by prejunctional α―and βâ€∎drenoceptors <i>in vivo</i> . British Journal of Pharmacology, 1988, 95, 1101-1108	.2.7	17
108	NPY ―a mediator of reserpineâ€resistant, nonâ€adrenergic vasoconstriction in cat spleen after preganglionic denervation?. Acta Physiologica Scandinavica, 1986, 126, 151-152.	2.3	29

#	Article	IF	CITATIONS
109	Coâ€release of neuropeptide Y and catecholamines upon adrenal activation in the cat. Acta Physiologica Scandinavica, 1986, 126, 231-238.	2.3	92
110	Mechanisms underlying pre―and postjunctional effects of neuropeptide Y in sympathetic vascular control. Acta Physiologica Scandinavica, 1986, 126, 239-249.	2.3	157
111	Plasma neuropeptide Yâ€like immunoreactivity and catecholamines during various degrees of sympathetic activation in man. Clinical Physiology, 1986, 6, 561-578.	0.7	192