Adelheid Cerwenka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946290/publications.pdf

Version: 2024-02-01

103 papers 9,367 citations

41258 49 h-index 94 g-index

110 all docs

110 docs citations

110 times ranked

12555 citing authors

#	Article	IF	CITATIONS
1	Natural killer cells, viruses and cancer. Nature Reviews Immunology, 2001, 1, 41-49.	10.6	750
2	Retinoic Acid Early Inducible Genes Define a Ligand Family for the Activating NKG2D Receptor in Mice. Immunity, 2000, 12, 721-727.	6.6	647
3	Natural killer cell memory in infection, inflammation and cancer. Nature Reviews Immunology, 2016, 16, 112-123.	10.6	459
4	Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain, 2011, 134, 704-720.	3.7	346
5	Tumor-Infiltrating Monocytic Myeloid-Derived Suppressor Cells Mediate CCR5-Dependent Recruitment of Regulatory T Cells Favoring Tumor Growth. Journal of Immunology, 2012, 189, 5602-5611.	0.4	341
6	Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. Journal of Experimental Medicine, 2012, 209, 2351-2365.	4.2	326
7	Natural Killer Cell Accumulation in Tumors Is Dependent on IFN-γ and CXCR3 Ligands. Cancer Research, 2008, 68, 8437-8445.	0.4	318
8	Ligands for natural killer cell receptors: redundancy or specificity. Immunological Reviews, 2001, 181, 158-169.	2.8	240
9	DAP12-Deficient Mice Fail to Develop Autoimmunity Due to Impaired Antigen Priming. Immunity, 2000, 13, 345-353.	6.6	221
10	Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood, 2016, 127, 473-486.	0.6	213
11	Radiation effects on antitumor immune responses: current perspectives and challenges. Therapeutic Advances in Medical Oncology, 2018, 10, 175883401774257.	1.4	185
12	Migration Kinetics and Final Destination of  Type 1 and Type 2 CD8 Effector Cells Predict Protection against Pulmonary Virus Infection. Journal of Experimental Medicine, 1999, 189, 423-434.	4.2	181
13	Human NK Cells Are Alerted to Induction of p53 in Cancer Cells by Upregulation of the NKG2D Ligands ULBP1 and ULBP2. Cancer Research, 2011, 71, 5998-6009.	0.4	178
14	Proliferating Cell Nuclear Antigen Is a Novel Inhibitory Ligand for the Natural Cytotoxicity Receptor NKp44. Journal of Immunology, 2011, 187, 5693-5702.	0.4	176
15	IL-12–producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. Journal of Clinical Investigation, 2014, 124, 5305-5316.	3.9	172
16	Metalloprotease-Mediated Tumor Cell Shedding of B7-H6, the Ligand of the Natural Killer Cell–Activating Receptor NKp30. Cancer Research, 2014, 74, 3429-3440.	0.4	169
17	Single-Cell RNA Sequencing of Tumor-Infiltrating NK Cells Reveals that Inhibition of Transcription Factor HIF- $1\hat{1}\pm$ Unleashes NK Cell Activity. Immunity, 2020, 52, 1075-1087.e8.	6.6	167
18	The TREM-1/DAP12 pathway. Immunology Letters, 2008, 116, 111-116.	1.1	164

#	Article	IF	Citations
19	Tricking the balance: NK cells in anti-cancer immunity. Immunobiology, 2017, 222, 11-20.	0.8	163
20	CTLA-4 Is Expressed by Activated Mouse NK Cells and Inhibits NK Cell IFN- \hat{I}^3 Production in Response to Mature Dendritic Cells. Journal of Immunology, 2014, 192, 4184-4191.	0.4	155
21	Activation of Natural Killer Cells by Newcastle Disease Virus Hemagglutinin-Neuraminidase. Journal of Virology, 2009, 83, 8108-8121.	1.5	149
22	Mononuclear myeloid-derived "suppressor―cells express RAE-1 and activate natural killer cells. Blood, 2008, 112, 4080-4089.	0.6	142
23	Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Frontiers in Immunology, 2017, 8, 458.	2.2	134
24	Iron Induces Anti-tumor Activity in Tumor-Associated Macrophages. Frontiers in Immunology, 2017, 8, 1479.	2.2	121
25	Production of Interferon-l̂³ by Influenza Hemagglutinin-Specific CD8 Effector T Cells Influences the Development of Pulmonary Immunopathology. American Journal of Pathology, 2001, 158, 119-130.	1.9	120
26	Molecular Competition for NKG2D. Immunity, 2001, 15, 201-211.	6.6	118
27	Natural Killer Cells and Solid Tumors. Journal of Innate Immunity, 2011, 3, 355-364.	1.8	112
28	Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood, 2013, 122, 1411-1418.	0.6	111
29	Downregulation of the activating NKp30 ligand B7-H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood, 2013, 122, 684-693.	0.6	109
30	New prospects on the NKG2D/NKG2DL system for oncology. Oncolmmunology, 2013, 2, e26097.	2.1	109
31	Redirecting T Cells to Ewing's Sarcoma Family of Tumors by a Chimeric NKG2D Receptor Expressed by Lentiviral Transduction or mRNA Transfection. PLoS ONE, 2012, 7, e31210.	1.1	101
32	Modulation of NKp30- and NKp46-Mediated Natural Killer Cell Responses by Poxviral Hemagglutinin. PLoS Pathogens, 2011, 7, e1002195.	2.1	94
33	CD16A Activation of NK Cells Promotes NK Cell Proliferation and Memory-Like Cytotoxicity against Cancer Cells. Cancer Immunology Research, 2018, 6, 517-527.	1.6	92
34	TGF- \hat{i}^21 : immunosuppressant and viability factor for T lymphocytes. Microbes and Infection, 1999, 1, 1291-1296.	1.0	90
35	Interferonâ€Î³ downâ€regulates NKG2D ligand expression and impairs the NKG2Dâ€mediated cytolysis of MHC class lâ€deficient melanoma by natural killer cells. International Journal of Cancer, 2009, 124, 1594-1604.	2.3	85
36	Antigen Dependently Activated Cluster of Differentiation 8-Positive T Cells Cause Perforin-Mediated Neurotoxicity in Experimental Stroke. Journal of Neuroscience, 2014, 34, 16784-16795.	1.7	83

#	Article	IF	CITATIONS
37	MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death and Disease, 2017, 8, e2973-e2973.	2.7	80
38	TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis. Nature Communications, 2016, 7, 13151.	5.8	76
39	Fully automated expansion and activation of clinical-grade natural killer cells for adoptive immunotherapy. Cytotherapy, 2015, 17, 621-632.	0.3	74
40	Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids. BMC Cancer, 2015, 15, 351.	1.1	74
41	Type 1 Treg cells promote the generation of CD8+ tissue-resident memory T cells. Nature Immunology, 2020, 21, 766-776.	7.0	66
42	Adenovirus serotype 5 E1A sensitizes tumor cells to NKG2D-dependent NK cell lysis and tumor rejection. Journal of Experimental Medicine, 2005, 202, 1477-1482.	4.2	62
43	Highly efficient IL-21 and feeder cell-driven <i>ex vivo</i> expansion of human NK cells with therapeutic activity in a xenograft mouse model of melanoma. Oncolmmunology, 2016, 5, e1219007.	2.1	62
44	Memory-Like NK Cells: Remembering a Previous Activation by Cytokines and NK Cell Receptors. Frontiers in Immunology, 2018, 9, 2796.	2.2	62
45	Adoptively transferred natural killer cells maintain long-term antitumor activity by epigenetic imprinting and CD4 ⁺ T cell help. Oncolmmunology, 2016, 5, e1219009.	2.1	61
46	The NKG2D/NKG2DL Axis in the Crosstalk Between Lymphoid and Myeloid Cells in Health and Disease. Frontiers in Immunology, 2018, 9, 827.	2.2	61
47	CD2–CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. European Journal of Immunology, 2016, 46, 2420-2425.	1.6	59
48	Activating NK cell receptor ligands are differentially expressed during progression to cervical cancer. International Journal of Cancer, 2008, 123, 2343-2353.	2.3	56
49	TREM-1 multimerization is essential for its activation on monocytes and neutrophils. Cellular and Molecular Immunology, 2019, 16, 460-472.	4.8	56
50	Radiotherapy orchestrates natural killer cell dependent antitumor immune responses through CXCL8. Science Advances, 2022, 8, eabh4050.	4.7	55
51	KIR downregulation by ILâ€12/15/18 unleashes human NK cells from KIR/HLAâ€I inhibition and enhances killing of tumor cells. European Journal of Immunology, 2018, 48, 355-365.	1.6	54
52	Non-T Cell Activation Linker (NTAL) Negatively Regulates TREM-1/DAP12-Induced Inflammatory Cytokine Production in Myeloid Cells. Journal of Immunology, 2007, 178, 1991-1999.	0.4	53
53	Shaping of NK Cell Responses by the Tumor Microenvironment. Cancer Microenvironment, 2013, 6, 135-146.	3.1	52
54	Cutting Edge: The AP-1 Subunit JunB Determines NK Cell-Mediated Target Cell Killing by Regulation of the NKG2D-Ligand RAE-1 $\hat{l}\mu$. Journal of Immunology, 2006, 176, 7-11.	0.4	48

#	Article	IF	CITATIONS
55	Distinct human circulating NKp30 ⁺ FclµRll³ ⁺ CD8 ⁺ T cell population exhibiting high natural killer-like antitumor potential. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5980-E5989.	3.3	43
56	The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nature Communications, 2016, 7, 10764.	5.8	41
57	Memory of Infections: An Emerging Role for Natural Killer Cells. PLoS Pathogens, 2013, 9, e1003548.	2.1	40
58	The Coincidence of Chromosome 15 Aberrations and \hat{I}^2 2-Microglobulin Gene Mutations Is Causative for the Total Loss of Human Leukocyte Antigen Class I Expression in Melanoma. Clinical Cancer Research, 2006, 12, 3297-3305.	3.2	39
59	Btk is a positive regulator in the TREM-1/DAP12 signaling pathway. Blood, 2011, 118, 936-945.	0.6	39
60	The proto-oncogene Myc drives expression of the NK cell-activating NKp30 ligand B7-H6 in tumor cells. Oncolmmunology, 2016, 5, e1116674.	2.1	39
61	Identification of CLEC12B, an Inhibitory Receptor on Myeloid Cells. Journal of Biological Chemistry, 2007, 282, 22370-22375.	1.6	38
62	Natural killers join the fight against cancer. Science, 2018, 359, 1460-1461.	6.0	37
63	NKp30 expression is a prognostic immune biomarker for stratification of patients with intermediate-risk acute myeloid leukemia. Oncotarget, 2017, 8, 49548-49563.	0.8	34
64	NK-cell responses are biased towards CD16-mediated effector functions in chronic hepatitis B virus infection. Journal of Hepatology, 2019, 70, 351-360.	1.8	32
65	TGF-Ĵ ² 2 silencing to target biliary-derived liver diseases. Gut, 2020, 69, 1677-1690.	6.1	31
66	Harnessing Soluble NK Cell Killer Receptors for the Generation of Novel Cancer Immune Therapy. PLoS ONE, 2008, 3, e2150.	1,1	30
67	Host-Derived Interleukin- $\hat{\Pi}$ ± Is Important in Determining the Immunogenicity of 3-Methylcholantrene Tumor Cells. Journal of Immunology, 2009, 182, 4874-4881.	0.4	29
68	Regulation of triggering receptor expressed on myeloid cells 1 expression on mouse inflammatory monocytes. Immunology, 2009, 128 , $185-195$.	2.0	29
69	Cutting Edge: The Minor Histocompatibility Antigen H60 Peptide Interacts with Both H-2Kb and NKG2D. Journal of Immunology, 2002, 168, 3131-3134.	0.4	28
70	New twist on the regulation of NKG2D ligand expression. Journal of Experimental Medicine, 2009, 206, 265-268.	4.2	24
71	Antitumor vaccination by Newcastle Disease Virus Hemagglutinin–Neuraminidase plasmid DNA application: Changes in tumor microenvironment and activation of innate anti-tumor immunity. Vaccine, 2011, 29, 1185-1193.	1.7	23
72	Regulatory T cells control macrophage accumulation and activation in lymphoma. International Journal of Cancer, 2010, 127, 1131-1140.	2.3	22

#	Article	IF	CITATIONS
73	Hepatitis C virus-induced natural killer cell proliferation involves monocyte-derived cells and the OX40/OX40L axis. Journal of Hepatology, 2018, 68, 421-430.	1.8	22
74	NKp44-Derived Peptide Binds Proliferating Cell Nuclear Antigen and Mediates Tumor Cell Death. Frontiers in Immunology, 2018, 9, 1114.	2.2	22
75	The Role of CD2 as a Regulator of Human T-Cell Cytokine Production. Immunological Reviews, 1996, 153, 107-122.	2.8	18
76	Checkpoint inhibition: NK cells enter the scene. Nature Immunology, 2018, 19, 650-652.	7.0	18
77	Targeting Natural Killer Cell Reactivity by Employing Antibody to NKp46: Implications for Type 1 Diabetes. PLoS ONE, 2015, 10, e0118936.	1.1	18
78	Exploiting natural killer cells for therapy of melanoma. JDDG - Journal of the German Society of Dermatology, 2015, 13, 23-28.	0.4	17
79	Early inflammatory players in cutaneous fibrosis. Journal of Dermatological Science, 2017, 87, 228-235.	1.0	17
80	Toward the next generation of NK cell-based adoptive cancer immunotherapy. Oncolmmunology, 2013, 2, e23811.	2.1	16
81	PPARÎ ³ induces PD-L1 expression in MSS+ colorectal cancer cells. Oncolmmunology, 2021, 10, 1906500.	2.1	15
82	NFâ€P Bâ€dependent upregulation of ICAMâ€1 by HPV16â€E6/E7 facilitates NK cell/target cell interaction. International Journal of Cancer, 2011, 128, 1104-1113.	2.3	14
83	Peripheral blood natural killer cell percentages in granulomatosis with polyangiitis correlate with disease inactivity and stage. Arthritis Research and Therapy, 2015, 17, 337.	1.6	14
84	INDUCTION OF ALLOANTIGEN-SPECIFIC HYPORESPONSIVENESS IN VITRO BY THE SHORT-CHAIN FATTY ACID N-BUTYRATE. Transplantation, 1995, 59, 1500-1503.	0.5	12
85	HMGB1: The metabolic weapon in the arsenal of NK cells. Molecular and Cellular Oncology, 2016, 3, e1175538.	0.3	12
86	Hepatitis C Virus and Human Cytomegalovirus—Natural Killer Cell Subsets in Persistent Viral Infections. Frontiers in Immunology, 2017, 8, 566.	2.2	11
87	Human ILC3 Exert TRAIL-Mediated Cytotoxicity Towards Cancer Cells. Frontiers in Immunology, 2022, 13, 742571.	2.2	11
88	NBAS Variants Are Associated with Quantitative and Qualitative NK and B Cell Deficiency. Journal of Clinical Immunology, 2021, 41, 1781-1793.	2.0	10
89	Chronic liver inflammation and hepatocellular carcinogenesis are independent of <scp>S</scp> 100 <scp>A</scp> 9. International Journal of Cancer, 2015, 136, 2458-2463.	2.3	9
90	Caspaseâ€8 in endothelial cells maintains gut homeostasis and prevents small bowel inflammation in mice. EMBO Molecular Medicine, 2022, , e14121.	3.3	9

#	Article	IF	CITATIONS
91	Active but not inactive granulomatosis with polyangiitis is associated with decreased and phenotypically and functionally altered CD56dim natural killer cells. Arthritis Research and Therapy, 2016, 18, 204.	1.6	8
92	NK Cells Under Hypoxia: The Two Faces of Vascularization in Tumor and Pregnancy. Frontiers in Immunology, 0, 13 , .	2.2	7
93	MULT1plying cancer immunity. Science, 2015, 348, 45-46.	6.0	6
94	Natural Killer Cell Deficiency and Severe Wound Infection after Thyroid Surgery. The European Journal of Surgery, 2001, 167, 792-794.	1.0	5
95	STAT5 Loss Awakens the Dark Force in Natural Killer Cells. Cancer Discovery, 2016, 6, 347-349.	7.7	5
96	Human innate immune cell crosstalk induces melanoma cell senescence. OncoImmunology, 2020, 9, 1808424.	2.1	5
97	Innate-like NKp30 ⁺ CD8 ⁺ T cells armed with TCR/CAR target tumor heterogeneity. Oncolmmunology, 2021, 10, 1973783.	2.1	4
98	NK cells – Versatile tools for viral defense and cancer treatment. European Journal of Immunology, 2013, 43, 860-863.	1.6	1
99	An intimate encounter: DC3s empower anti-tumor CTLs. Cancer Cell, 2021, 39, 1181-1183.	7.7	1
100	New twist on the regulation of NKG2D ligand expression. Journal of Experimental Medicine, 2009, 206, 723-723.	4.2	0
101	Die Nutzung nat $ ilde{A}^{1/4}$ rlicher Killerzellen f $ ilde{A}^{1/4}$ r die Therapie des Melanoms. JDDG - Journal of the German Society of Dermatology, 2015, 13, 23-29.	0.4	0
102	NK Cells in Antitumor Immunity. , 2016, , 487-492.		0
103	ILC1-like NK cells as matchmakers for DC-T cell interactions. Immunity, 2021, 54, 2185-2187.	6.6	0