Ruibin Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946284/publications.pdf

Version: 2024-02-01

94 papers 7,630 citations

43 h-index 51492 86 g-index

95 all docs 95
docs citations

95 times ranked 10926 citing authors

#	Article	IF	CITATIONS
1	Metal/Semiconductor Hybrid Nanostructures for Plasmonâ€Enhanced Applications. Advanced Materials, 2014, 26, 5274-5309.	11.1	926
2	Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nature Communications, 2013, 4, 2381.	5.8	612
3	Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2013, 135, 5588-5601.	6.6	597
4	Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement. Journal of Physical Chemistry Letters, 2012, 3, 191-202.	2.1	388
5	High-Efficiency "Working-in-Tandem―Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. Journal of the American Chemical Society, 2018, 140, 8497-8508.	6.6	382
6	Plasmon-enhanced chemical reactions. Journal of Materials Chemistry A, 2013, 1, 5790.	5.2	257
7	Unraveling the Evolution and Nature of the Plasmons in (Au Core)–(Ag Shell) Nanorods. Advanced Materials, 2012, 24, OP200-7.	11.1	225
8	Site-Selective Growth of Crystalline Ceria with Oxygen Vacancies on Gold Nanocrystals for Near-Infrared Nitrogen Photofixation. Journal of the American Chemical Society, 2019, 141, 5083-5086.	6.6	222
9	Time–Temperature Indicator for Perishable Products Based on Kinetically Programmable Ag Overgrowth on Au Nanorods. ACS Nano, 2013, 7, 4561-4568.	7. 3	173
10	Emerging Applications of Plasmons in Driving CO ₂ Reduction and N ₂ Fixation. Advanced Materials, 2018, 30, e1802227.	11.1	155
11	Dielectric nanoresonators for light manipulation. Physics Reports, 2017, 701, 1-50.	10.3	145
12	Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Nature Communications, 2015, 6, 6990.	5.8	137
13	Fe(<scp>iii</scp>) doped NiS ₂ nanosheet: a highly efficient and low-cost hydrogen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 10173-10181.	5.2	137
14	Au/Ag core–shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy and Environmental Science, 2016, 9, 898-905.	15.6	127
15	Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel–Cobalt Sulfide Nanosheets. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10087-10095.	4.0	111
16	Decomposition of Ethanol on Pd(111): A Density Functional Theory Study. Langmuir, 2010, 26, 1879-1888.	1.6	103
17	Colloidal Moderateâ€Refractiveâ€Index Cu ₂ 0 Nanospheres as Visibleâ€Region Nanoantennas with Electromagnetic Resonance and Directional Lightâ€Scattering Properties. Advanced Materials, 2015, 27, 7432-7439.	11.1	102
18	One-pot hydrothermal fabrication of layered \hat{I}^2 -Ni(OH) 2 /g-C 3 N 4 nanohybrids for enhanced photocatalytic water splitting. Applied Catalysis B: Environmental, 2016, 194, 74-83.	10.8	102

#	Article	IF	Citations
19	Mass-Based Photothermal Comparison Among Gold Nanocrystals, PbS Nanocrystals, Organic Dyes, and Carbon Black. Journal of Physical Chemistry C, 2013, 117, 8909-8915.	1.5	97
20	Realization of Red Plasmon Shifts up to $\hat{a}^{1}/4900$ nm by AgPd-Tipping Elongated Au Nanocrystals. Journal of the American Chemical Society, 2017, 139, 13837-13846.	6.6	96
21	Chemical Vapor Deposition Growth of High Crystallinity Sb ₂ Se ₃ Nanowire with Strong Anisotropy for Nearâ€Infrared Photodetectors. Small, 2019, 15, e1805307.	5.2	93
22	Density Functional Investigation of Methanol Dehydrogenation on Pd(111). Journal of Physical Chemistry C, 2009, 113, 4188-4197.	1.5	91
23	Thickness Control Produces Gold Nanoplates with Their Plasmon in the Visible and Nearâ€Infrared Regions. Advanced Optical Materials, 2016, 4, 76-85.	3.6	91
24	Waterâ€Induced Formation of Ni ₂ Pâ€"Ni ₁₂ P ₅ Interfaces with Superior Electrocatalytic Activity toward Hydrogen Evolution Reaction. Small, 2021, 17, e2006770.	5.2	83
25	Bifunctional Au@Pt core–shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy. Nanoscale, 2014, 6, 9063-9070.	2.8	81
26	Design of Palladium-Doped <i>g</i> -C ₃ N ₄ for Enhanced Photocatalytic Activity toward Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2866-2873.	2.5	76
27	Colloidal Gold Nanocups with Orientationâ€Dependent Plasmonic Properties. Advanced Materials, 2016, 28, 6322-6331.	11.1	74
28	Localized and Continuous Tuning of Monolayer MoS ₂ Photoluminescence Using a Single Shapeâ€Controlled Ag Nanoantenna. Advanced Materials, 2016, 28, 701-706.	11.1	73
29	Density Functional Study of Ethanol Decomposition on Rh(111). Journal of Physical Chemistry C, 2010, 114, 21493-21503.	1.5	66
30	Aerosol-Sprayed Gold/Ceria Photocatalyst with Superior Plasmonic Hot Electron-Enabled Visible-Light Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2560-2571.	4.0	65
31	Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen. Advanced Functional Materials, 2014, 24, 7328-7337.	7.8	61
32	A Chemical Approach To Break the Planar Configuration of Ag Nanocubes into Tunable Two-Dimensional Metasurfaces. Nano Letters, 2016, 16, 3872-3878.	4.5	61
33	Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angewandte Chemie - International Edition, 2021, 60, 927-936.	7.2	61
34	A Schottkyâ€Barrierâ€Free Plasmonic Semiconductor Photocatalyst for Nitrogen Fixation in a "Oneâ€Stoneâ€Iwoâ€Birds―Manner. Advanced Materials, 2022, 34, e2104226.	11.1	60
35	Macroscale Colloidal Noble Metal Nanocrystal Arrays and Their Refractive Indexâ€Based Sensing Characteristics. Small, 2014, 10, 802-811.	5.2	59
36	Unusual and Tunable One-Photon Nonlinearity in Gold-Dye Plexcitonic Fano Systems. Nano Letters, 2015, 15, 2705-2710.	4.5	59

#	Article	IF	CITATIONS
37	Correlating the Plasmonic and Structural Evolutions during the Sulfidation of Silver Nanocubes. ACS Nano, 2013, 7, 9354-9365.	7.3	57
38	Crystalline structure-dependent growth of bimetallic nanostructures. Nanoscale, 2012, 4, 7070.	2.8	56
39	Oxygen Vacancy–Enhanced Electrocatalytic Performances of TiO ₂ Nanosheets toward N ₂ Reduction Reaction. Advanced Materials Interfaces, 2019, 6, 1901034.	1.9	54
40	Aerosol-spray metal phosphide microspheres with bifunctional electrocatalytic properties for water splitting. Journal of Materials Chemistry A, 2018, 6, 4783-4792.	5.2	53
41	Anchoring Positively Charged Pd Single Atoms in Ordered Porous Ceria to Boost Catalytic Activity and Stability in Suzuki Coupling Reactions. Small, 2020, 16, e2001782.	5. 2	51
42	Metallic-Phase MoS ₂ Nanopetals with Enhanced Electrocatalytic Activity for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 13435-13442.	3.2	48
43	Intercalation and delamination behavior of Ti ₃ C ₂ T _x and MnO ₂ /Ti ₃ C ₂ T _x /RGO flexible fibers with high volumetric capacitance. Journal of Materials Chemistry A, 2019, 7, 12582-12592.	5.2	48
44	Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels. Nanoscale, 2018, 10, 575-581.	2.8	47
45	Enhanced high-order ultraviolet upconversion luminescence in sub-20 nm β-NaYbF ₄ :0.5% Tm nanoparticles via Fe ³⁺ doping. CrystEngComm, 2017, 19, 1304-1310.	1.3	43
46	Facile synthesis of Ti ₄ O ₇ on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 10494-10504.	5.2	43
47	Methanol dehydrogenation on Rh(111): A density functional and microkinetic modeling study. Journal of Molecular Catalysis A, 2011, 344, 99-110.	4.8	41
48	Sub-10 nm Water-Dispersible \hat{I}^2 -NaGdF ₄ : <i>X</i> % Eu ³⁺ Nanoparticles with Enhanced Biocompatibility for in Vivo X-ray Luminescence Computed Tomography. ACS Applied Materials & Dispersion of the Materials amp; Interfaces, 2017, 9, 39985-39993.	4.0	38
49	All solid-state V2O5-based flexible hybrid fiber supercapacitors. Journal of Power Sources, 2017, 371, 18-25.	4.0	36
50	Gold Nanobipyramidâ€Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching â‰^140 nm at 2 vol% Hydrogen Concentration. Advanced Optical Materials, 2017, 5, 1700740.	3.6	34
51	Simultaneous enhancement of red upconversion luminescence and CT contrast of NaGdF ₄ :Yb,Er nanoparticles <i>via</i> Lu ³⁺ doping. Nanoscale, 2018, 10, 20279-20288.	2.8	32
52	Mechanism of the Ethylene Conversion to Ethylidyne on $Rh(111)$: A Density Functional Investigation. Journal of Physical Chemistry C, 2010, 114, 8440-8448.	1.5	31
53	Colloidal porous gold nanoparticles. Nanoscale, 2018, 10, 18473-18481.	2.8	31
54	Engineering of Hollow PdPt Nanocrystals via Reduction Kinetic Control for Their Superior Electrocatalytic Performances. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29543-29551.	4.0	31

#	Article	IF	CITATIONS
55	Metal carbide/Ni hybrids for high-performance electromagnetic absorption and absorption-based electromagnetic interference shielding. Inorganic Chemistry Frontiers, 2020, 7, 4832-4844.	3.0	31
56	Dehydrogenation of methanol on $Pd(100)$: comparison with the results of $Pd(111)$. Physical Chemistry Chemical Physics, 2010, 12, 7794.	1.3	30
57	(Fe,N-codoped carbon nanotube)/(Fe-based nanoparticle) nanohybrid derived from Fe-doped g-C3N4: A superior catalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 579, 391-400.	5.0	30
58	Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu ₂ O Nanorods. Small, 2016, 12, 4264-4276.	5.2	28
59	Formation mechanisms of interfaces between different Ti _n O _{2nâ^1} phases prepared by carbothermal reduction reaction. CrystEngComm, 2019, 21, 524-534.	1.3	28
60	Graphitic Carbon Nitride (gâ€C ₃ N ₄) Supported Palladium Species: An Efficient Heterogeneous Photocatalyst Surpassing Homogeneous Thermal Heating Systems for Suzuki Coupling. ChemPlusChem, 2019, 84, 1164-1168.	1.3	27
61	Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods. Nanoscale, 2016, 8, 6514-6526.	2.8	25
62	A Lowâ€Cost and Facile Method for the Preparation of Feâ€N/Câ€Based Hybrids with Superior Catalytic Performance toward Oxygen Reduction Reaction. Advanced Materials Interfaces, 2019, 6, 1900273.	1.9	25
63	Insight into factors affecting the presence, degree, and temporal stability of fluorescence intensification on ZnO nanorod ends. Nanoscale, 2015, 7, 1424-1436.	2.8	22
64	A Queueâ€Ordered Layered Mnâ€Based Oxides with Al Substitution as Highâ€Rate and Highâ€Stabilized Cathode for Sodiumâ€ion Batteries. Small, 2021, 17, e2006259.	5.2	22
65	Synthesis of Titanium Molybdenum Nitride-Decorated Electrospun Carbon Nanofiber Membranes as Interlayers to Suppress Polysulfide Shuttling in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 776-788.	3.2	21
66	Density Functional Study of the Reaction of SO ₂ on Ir(111). Journal of Physical Chemistry C, 2009, 113, 18223-18232.	1.5	20
67	Decomposition of Methanthiol on Pt(111): A Density Functional Investigation. Langmuir, 2010, 26, 12017-12025.	1.6	20
68	Transparent, Flexible, and Stable Polyethersulfone/Copperâ€Nanowires/Polyethylene Terephthalate Sandwichâ€Structured Films for Highâ€Performance Electromagnetic Interference Shielding. Advanced Engineering Materials, 2021, 23, 2100283.	1.6	20
69	Effect of surface-deposited Ti3C2Tx MXene on the photoelectrochemical water-oxidation performance of iron-doped titania nanorod array. Chemical Engineering Journal, 2022, 431, 134124.	6.6	20
70	Au Nanobottles with Synthetically Tunable Overall and Opening Sizes for Chemo-Photothermal Combined Therapy. ACS Applied Materials & Interfaces, 2019, 11, 5353-5363.	4.0	19
71	(TiO ₂ (B) Nanosheet)/(Metallic Phase MoS ₂) Hybrid Nanostructures: An Efficient Catalyst for Photocatalytic Hydrogen Evolution. Solar Rrl, 2019, 3, 1900323.	3.1	18
72	Toroidal dipole-induced absorption and scattering dip in (dielectric core)@(plasmonic shell) nanostructures. Optics Express, 2017, 25, 28935.	1.7	15

#	Article	lF	CITATIONS
73	Tuning the catalytic activity of colloidal noble metal nanocrystals by using differently charged surfactants. Nanoscale, 2018, 10, 5607-5616.	2.8	14
74	Interfacial Engineering of Metal/Metal Oxide Heterojunctions toward Oxygen Reduction and Evolution Reactions. ChemPlusChem, 2021, 86, 1586-1601.	1.3	14
75	Chemoâ€Phototherapy with Carfilzomibâ€Encapsulated TiN Nanoshells Suppressing Tumor Growth and Lymphatic Metastasis. Small, 2022, 18, .	5.2	14
76	Highly efficient oxygen evolution catalysis achieved by NiFe oxyhydroxide clusters anchored on carbon black. Journal of Materials Chemistry A, 2022, 10, 10342-10349.	5.2	13
77	Control of the emission from electric and magnetic dipoles by gold nanocup antennas. Optics Express, 2019, 27, 14221.	1.7	12
78	Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angewandte Chemie, 2021, 133, 940-949.	1.6	12
79	Driving Click Reactions with Plasmonic Hot Holes on (Au Core)@(Cu ₂ O Shell) Nanostructures for Regioselective Production of 1,2,3-Triazoles. ACS Applied Nano Materials, 2021, 4, 4623-4631.	2.4	12
80	Synthesis of Ti4O7/Ti3O5 Dual-Phase Nanofibers with Coherent Interface for Oxygen Reduction Reaction Electrocatalysts. Materials, 2020, 13, 3142.	1.3	11
81	Electromagnetic Resonanceâ€Modulated Magnetic Emission in Europiumâ€Doped Subâ€Micrometer Zirconia Spheres. Advanced Optical Materials, 2021, 9, 2002212.	3.6	11
82	Formation Mechanism of Nitrogen-Doped Titanium Monoxide Nanospheres and Their Application as Sulfur Hosts in Lithium Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 5713-5726.	2.5	11
83	Unraveling the Mechanism of the Zn-Improved Catalytic Activity of Pd-Based Catalysts for Water–Gas Shift Reaction. Journal of Physical Chemistry C, 2016, 120, 20181-20191.	1.5	9
84	Design and synthesis of carbon nanofibers decorated by dual-phase TinO2n-1 nanoparticles with synergistic catalytic effect as high performance oxygen reduction reaction catalysts. Electrochimica Acta, 2020, 344, 136120.	2.6	9
85	Enhancing the photocatalytic water splitting of graphitic carbon nitride by hollow anatase titania dielectric resonators. Journal of Colloid and Interface Science, 2021, 598, 14-23.	5.0	9
86	Nanostructures Composed of Dual Plasmonic Materials Exhibiting High Thermal Stability and SERS Enhancement. Particle and Particle Systems Characterization, 2021, 38, 2000321.	1.2	8
87	(Gold triangular nanoplate core)@(silver shell) nanostructures as highly sensitive and selective plasmonic nanoprobes for hydrogen sulfide detection. Nanoscale, 2020, 12, 20250-20257.	2.8	7
88	Nanoantennas Involved Optical Plasmonic Cavity for Improved Luminescence of Quantum Dots Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44760-44767.	4.0	7
89	Gold Nanocups: Colloidal Gold Nanocups with Orientationâ€Dependent Plasmonic Properties (Adv.) Tj ETQq1 1	0.784314 11.1	rgBT Overlo
90	Efficient oxygen reduction electrocatalyst derived from facile Fe,Nâ^'surface treatment of carbon black. Journal of Colloid and Interface Science, 2022, 605, 101-109.	5.0	4

Ruibin Jiang

#	Article	IF	CITATIONS
91	Few-layer Mg-deficient borophene nanosheets: I ₂ oxidation and ultrasonic delamination from MgB ₂ . Nanoscale, 2022, 14, 4195-4203.	2.8	3
92	Efficient photocatalytic hydrogen evolution through reverse hydrogen spillover on photoactivated copper-doped mesoporous titania spheres. Applied Materials Today, 2022, 27, 101417.	2.3	2
93	Plasmon-assisted Chemical Reactions. World Scientific Series in Nanoscience and Nanotechnology, 2016, , 155-193.	0.1	1
94	Synthesis of Porous Plasmonic Nanocrystals., 2022, , 115-145.		0