
Young-Seok Shon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9462807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fullerene Pipes. Science, 1998, 280, 1253-1256.	6.0	3,032
2	The Influence of Packing Densities and Surface Order on the Frictional Properties of Alkanethiol Self-Assembled Monolayers (SAMs) on Gold:Â A Comparison of SAMs Derived from Normal and Spiroalkanedithiols. Langmuir, 2000, 16, 2220-2224.	1.6	152
3	Nanoscale near-field infrared spectroscopic imaging of silica-shell/gold-core and pure silica nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	148
4	Spiroalkanedithiol-Based SAMs Reveal Unique Insight into the Wettabilities and Frictional Properties of Organic Thin Films. Journal of the American Chemical Society, 2000, 122, 7556-7563.	6.6	145
5	Aqueous Synthesis of Alkanethiolate-Protected Ag Nanoparticles Using Bunte Salts. Langmuir, 2004, 20, 6626-6630.	1.6	117
6	Structure, Wettability, and Frictional Properties of Phenyl-Terminated Self-Assembled Monolayers on Gold. Langmuir, 2001, 17, 7364-7370.	1.6	116
7	Systematic Control of the Packing Density of Self-Assembled Monolayers Using Bidentate and Tridentate Chelating Alkanethiols. Langmuir, 2005, 21, 2902-2911.	1.6	111
8	Catalytic ring-closing olefin metathesis of sulfur-containing species: Heteroatom and other effects. Tetrahedron Letters, 1997, 38, 1283-1286.	0.7	98
9	Synthesis of Tetraoctylammonium-Protected Gold Nanoparticles with Improved Stability. Langmuir, 2005, 21, 5689-5692.	1.6	91
10	Monolayer-Protected Bimetal Cluster Synthesis by Core Metal Galvanic Exchange Reaction. Langmuir, 2002, 18, 3880-3885.	1.6	87
11	Desorption and Exchange of Self-Assembled Monolayers (SAMs) on Gold Generated from Chelating Alkanedithiols. Journal of Physical Chemistry B, 2000, 104, 8192-8200.	1.2	86
12	Low-Density Self-Assembled Monolayers on Gold Derived from Chelating 2-Monoalkylpropane-1,3-dithiols. Langmuir, 2000, 16, 541-548.	1.6	79
13	Unsymmetrical Disulfides and Thiol Mixtures Produce Different Mixed Monolayer-Protected Gold Clusters. Langmuir, 2001, 17, 7735-7741.	1.6	78
14	Alkanethiolate-Protected Gold Clusters Generated from Sodium S-Dodecylthiosulfate (Bunte Salts). Langmuir, 2000, 16, 6555-6561.	1.6	77
15	The Adsorption of Unsymmetrical Spiroalkanedithiols onto Gold Affords Multi-Component Interfaces that Are Homogeneously Mixed at the Molecular Level. Journal of the American Chemical Society, 2000, 122, 1278-1281.	6.6	65
16	Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity. ACS Catalysis, 2012, 2, 1838-1845.	5.5	64
17	Fullerene-Terminated Alkanethiolate SAMs on Gold Generated from Unsymmetrical Disulfides. Langmuir, 1999, 15, 5329-5332.	1.6	62
18	Water-Soluble, Sulfonic Acid-Functionalized, Monolayer-Protected Nanoparticles and an Ionically Conductive Molten Salt Containing Them. Langmuir, 2001, 17, 1255-1261.	1.6	61

YOUNG-SEOK SHON

#	Article	IF	CITATIONS
19	Synthesis of Mixed Monolayer-Protected Gold Clusters from Thiol Mixtures:Â Variation in the Tail Group, Chain Length, and Solvent. Langmuir, 2003, 19, 8555-8559.	1.6	60
20	Controlling Surface Ligand Density and Core Size of Alkanethiolate-Capped Pd Nanoparticles and Their Effects on Catalysis. Langmuir, 2012, 28, 14502-14508.	1.6	59
21	Chelating Self-Assembled Monolayers on Gold Generated from Spiroalkanedithiols. Langmuir, 1999, 15, 1136-1140.	1.6	58
22	Hybrid lipid–nanoparticle complexes for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 695-708.	2.9	53
23	Chemical, Thermal, and Ultrasonic Stability of Hybrid Nanoparticles and Nanoparticle Multilayer Films. Chemistry of Materials, 2006, 18, 107-114.	3.2	49
24	Synthesis and catalytic properties of alkanethiolate-capped Pd nanoparticles generated from sodium S-dodecylthiosulfate. Journal of Materials Chemistry, 2011, 21, 307-312.	6.7	46
25	Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands. ChemCatChem, 2015, 7, 892-900.	1.8	46
26	Catalytic isomerization of allyl alcohols to carbonyl compounds using poisoned Pd nanoparticles. Applied Catalysis A: General, 2011, 405, 137-141.	2.2	42
27	Preparation of Nanostructured Film Arrays for Transmission Localized Surface Plasmon Sensing. Plasmonics, 2009, 4, 95-105.	1.8	41
28	Reduction of Azides to Amines with Borohydride Exchange Resin – Nickel Acetate. Synthetic Communications, 1993, 23, 3047-3053.	1.1	38
29	Fullerene-Functionalized Gold Nanoparticles:  Electrochemical and Spectroscopic Properties. Analytical Chemistry, 2004, 76, 6102-6107.	3.2	37
30	Structural characterization and frictional properties of C60-terminated self-assembled monolayers on Au(111). Thin Solid Films, 2000, 358, 152-158.	0.8	35
31	Water-Soluble Pd Nanoparticles Synthesized from ω-Carboxyl- <i>S</i> -Alkanethiosulfate Ligand Precursors as Unimolecular Micelle Catalysts. ACS Applied Materials & Interfaces, 2013, 5, 12432-12440.	4.0	34
32	A Steady-State Kinetic Model Can Be Used to Describe the Growth of Self-Assembled Monolayers (SAMs) on Gold. Journal of Physical Chemistry B, 2000, 104, 8182-8191.	1.2	33
33	[60]Fullerene-linked gold nanoparticles: synthesis and layer-by-layer growth on a solid surfaceElectronic supplementary information (ESI) available: supporting data including UV-vis spectroscopy and transmission electron microscopy results. See http://www.rsc.org/suppdata/cc/b2/b207246g/. Chemical Communications. 2002 2560-2561.	2.2	33
34	Interactions of Small Molecules and Au Nanoparticles with Solubilized Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 3726-3732.	1.2	32
35	Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis. Nanomaterials, 2018, 8, 346.	1.9	32
36	Thiol-Capped Gold Nanoparticles on Graphite:  Spontaneous Adsorption and Electrochemically Induced Release. Journal of Physical Chemistry C, 2007, 111, 7179-7184.	1.5	29

YOUNG-SEOK SHON

#	Article	IF	CITATIONS
37	Synthesis of Nanoparticle-Cored Dendrimers by Convergent Dendritic Functionalization of Monolayer-Protected Nanoparticles. Langmuir, 2008, 24, 6924-6931.	1.6	29
38	Effect of Headgroup on Electrical Conductivity of Self-Assembled Monolayers on Mercury: <i>n</i> -Alkanethiols versus <i>n</i> -Alkaneselenols. Langmuir, 2010, 26, 1570-1573.	1.6	28
39	Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles. Nanoscale, 2015, 7, 17786-17790.	2.8	28
40	Electronic structure of ensembles of gold nanoparticles: Size and proximity effects. Physical Review B, 2005, 72, .	1.1	27
41	Nanoscale subsurface- and material-specific identification of single nanoparticles. Optics Express, 2011, 19, 20865.	1.7	27
42	Morphological transformation of gold nanoparticles on graphene oxide: effects of capping ligands and surface interactions. Nano Convergence, 2019, 6, 2.	6.3	26
43	Organic reactions of monolayer-protected metal nanoparticles. Comptes Rendus Chimie, 2003, 6, 1009-1018.	0.2	25
44	Graphene Oxide-Promoted Reshaping and Coarsening of Gold Nanorods and Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 3406-3413.	4.0	24
45	Stability of tetraoctylammonium bromide-protected gold nanoparticles: Effects of anion treatments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352, 12-17.	2.3	23
46	The relationships between interfacial friction and the conformational order of organic thin films. Tribology Letters, 2001, 10, 81-87.	1.2	22
47	Dendritic functionalization of monolayer-protected gold nanoparticles. Materials Research Bulletin, 2007, 42, 1178-1185.	2.7	22
48	Stability, cytotoxicity and cell uptake of water-soluble dendron–conjugated gold nanoparticles with 3, 12 and 17 nm cores. Journal of Materials Chemistry B, 2015, 3, 6071-6080.	2.9	22
49	Direct Assembly of Photoresponsive C ₆₀ â^ Gold Nanoparticle Hybrid Films. ACS Applied Materials & Interfaces, 2009, 1, 2699-2702.	4.0	21
50	Preparation of Partially Poisoned Alkanethiolate-Capped Platinum Nanoparticles for Hydrogenation of Activated Terminal Alkynes. ACS Applied Materials & amp; Interfaces, 2017, 9, 9823-9832.	4.0	20
51	Molecular conformation changes in alkylthiol ligands as a function of size in gold nanoparticles: X-ray absorption studies. Physical Review B, 2006, 74, .	1.1	19
52	Dendritic Functionalization of Metal Nanoparticles for Nanoparticle-Cored Dendrimers. Current Nanoscience, 2007, 3, 245-254.	0.7	18
53	Alkanethiolate-capped palladium nanoparticles for selective catalytic hydrogenation of dienes and trienes. Catalysis Science and Technology, 2017, 7, 4823-4829.	2.1	17
54	Preparation of Ultrathin Thiolate-Covered Bimetallic Systems:  From Extended Planar to Nanoparticle Surfaces. Journal of Physical Chemistry C, 2007, 111, 9359-9364.	1.5	16

#	Article	IF	CITATIONS
55	Stability and Morphology of Gold Nanoisland Arrays Generated from Layer-by-Layer Assembled Nanoparticle Multilayer Films: Effects of Heating Temperature and Particle Size. Journal of Physical Chemistry C, 2011, 115, 10597-10605.	1.5	16
56	Tandem semi-hydrogenation/isomerization of propargyl alcohols to saturated carbonyl analogues by dodecanethiolate-capped palladium nanoparticle catalysts. RSC Advances, 2013, 3, 13642.	1.7	15
57	Mechanistic Insights into the Formation of Dodecanethiolate-Stabilized Magnetic Iridium Nanoparticles: Thiosulfate vs Thiol Ligands. Journal of Physical Chemistry C, 2014, 118, 14548-14554.	1.5	15
58	Influence of graphene oxide supports on solution-phase catalysis of thiolate-protected palladium nanoparticles in water. New Journal of Chemistry, 2017, 41, 177-183.	1.4	15
59	Colloidal Palladium Nanoparticles for Selective Hydrogenation of Styrene Derivatives with Reactive Functional Groups. ACS Omega, 2019, 4, 20819-20828.	1.6	15
60	Unsupported micellar palladium nanoparticles for biphasic hydrogenation and isomerization of hydrophobic allylic alcohols in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 367-372.	2.3	13
61	Apolipoprotein E3-mediated cellular uptake of reconstituted high-density lipoprotein bearing core 3, 10, or 17 nm hydrophobic gold nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 8495-8510.	3.3	13
62	Water-Soluble Noble Metal Nanoparticle Catalysts Capped with Small Organic Molecules for Organic Transformations in Water. ACS Applied Nano Materials, 2021, 4, 3294-3318.	2.4	13
63	Effects of Noncovalent Interactions on the Catalytic Activity of Unsupported Colloidal Palladium Nanoparticles Stabilized with Thiolate Ligands. Journal of Physical Chemistry C, 2017, 121, 20882-20891.	1.5	12
64	Alkanethiolate-Capped Palladium Nanoparticles for Regio- and Stereoselective Hydrogenation of Allenes. Catalysts, 2018, 8, 428.	1.6	12
65	A Route to Redox-active Nanoparticle-cored Dendrimers: Post-encapsulation of Ferrocene. Chemistry Letters, 2006, 35, 644-645.	0.7	11
66	Isolated Effects of Surface Ligand Density on the Catalytic Activity and Selectivity of Palladium Nanoparticles. ACS Applied Nano Materials, 2019, 2, 7188-7196.	2.4	11
67	Characterization of localized surface plasmon resonance transducers produced from Au25 nanoparticle multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 402, 146-151.	2.3	8
68	Chemical and heating treatments of ionic monolayer-protected clusters (IMPCs) with different surface counter anions. Journal of Colloid and Interface Science, 2007, 316, 66-71.	5.0	6
69	Preparation of Gold Nanoisland Arrays from Layer-by-Layer Assembled Nanoparticle Multilayer Films. Bulletin of the Korean Chemical Society, 2010, 31, 291-297.	1.0	6
70	Ultrasonic, chemical stability and preparation of self-assembled fullerene[C60]-gold nanoparticle films. Ultrasonics, 2006, 44, e363-e366.	2.1	5
71	Molecular interactions between pre-formed metal nanoparticles and graphene families. Advances in Nano Research, 2018, 6, 357-375.	0.9	5
72	Electronic interactions between gold nanoclusters in constrained geometries. Physical Review B, 2006, 73, .	1.1	4

#	Article	IF	CITATIONS
73	A Fast and Efficient <scp>UPLCâ€ESIâ€MS</scp> / <scp>MS</scp> Method for Detection, Identification, and Quantitative Analysis of Bioactive Substances in Medicinal Herbal Extracts of Preventing Hair Loss. Bulletin of the Korean Chemical Society, 2015, 36, 2469-2476.	1.0	4
74	Metal Nanoparticles Protected with Monolayers. , 2004, , .		2
75	Proximity Effects of Methyl Group on Ligand Steric Interactions and Colloidal Stability of Palladium Nanoparticles. Frontiers in Chemistry, 2020, 8, 599.	1.8	2
76	Self-Assembled Monolayers Derived from Bidentate Organosulfur Adsorbates. Materials Research Society Symposia Proceedings, 1999, 576, 183.	0.1	1
77	Selective Mono-Hydrogenation of Polyunsaturated Hydrocarbons: Traditional and Nanoscale Catalysis. , 0, , .		1
78	Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles. Advances in Nano Research, 2014, 2, 57-67.	0.9	0