Emily R Liman

List of Publications by Citations

Source: https://exaly.com/author-pdf/9462778/emily-r-liman-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52	5,291 citations	31	57
papers		h-index	g-index
57	5,790 ext. citations	10.8	5.69
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
52	Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. <i>Neuron</i> , 1992 , 9, 861-71	13.9	992
51	Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 15160-5	11.5	349
50	TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 5791-6	11.5	344
49	A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. <i>Neuron</i> , 1994 , 13, 611-21	13.9	312
48	Peripheral coding of taste. <i>Neuron</i> , 2014 , 81, 984-1000	13.9	273
47	Voltage-sensing residues in the S4 region of a mammalian K+ channel. <i>Nature</i> , 1991 , 353, 752-6	50.4	259
46	The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. <i>Journal of Biological Chemistry</i> , 2008 , 283, 32691-703	5.4	199
45	Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 3328-32	11.5	184
44	Recombinant probes for visualizing endogenous synaptic proteins in living neurons. <i>Neuron</i> , 2013 , 78, 971-85	13.9	168
43	Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. <i>Journal of Neuroscience</i> , 2007 , 27, 14147-57	6.6	166
42	The transduction channel TRPM5 is gated by intracellular calcium in taste cells. <i>Journal of Neuroscience</i> , 2007 , 27, 5777-86	6.6	150
41	Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. <i>Journal of Biological Chemistry</i> , 2005 , 280, 39185-92	5.4	140
40	A proton current drives action potentials in genetically identified sour taste cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 22320-5	11.5	127
39	An evolutionarily conserved gene family encodes proton-selective ion channels. <i>Science</i> , 2018 , 359, 104	1733.951	0 120
38	Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1996 , 93, 2365-9	11.5	119
37	Gating mechanism of a cloned potassium channel expressed in frog oocytes and mammalian cells. <i>Neuron</i> , 1990 , 4, 39-51	13.9	119
36	TRPA1 is a component of the nociceptive response to CO2. <i>Journal of Neuroscience</i> , 2010 , 30, 12958-63	6.6	109

(2006-2003)

35	An evolutionarily conserved dileucine motif in Shal K+ channels mediates dendritic targeting. Nature Neuroscience, 2003, 6, 243-50	25.5	108
34	Grey squirrels remember the locations of buried nuts. <i>Animal Behaviour</i> , 1991 , 41, 103-110	2.8	104
33	Electrophysiological characterization of chemosensory neurons from the mouse vomeronasal organ. <i>Journal of Neuroscience</i> , 1996 , 16, 4625-37	6.6	99
32	A TRPA1-dependent mechanism for the pungent sensation of weak acids. <i>Journal of General Physiology</i> , 2011 , 137, 493-505	3.4	87
31	The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E229-38	11.5	85
30	Enhancement of kainate-gated currents in retinal horizontal cells by cyclic AMP-dependent protein kinase. <i>Brain Research</i> , 1989 , 481, 399-402	3.7	78
29	Cellular and Neural Responses to Sour Stimuli Require the Proton Channel Otop1. <i>Current Biology</i> , 2019 , 29, 3647-3656.e5	6.3	74
28	Regulation by voltage and adenine nucleotides of a Ca2+-activated cation channel from hamster vomeronasal sensory neurons. <i>Journal of Physiology</i> , 2003 , 548, 777-87	3.9	64
27	Ultrastructural localization of G-proteins and the channel protein TRP2 to microvilli of rat vomeronasal receptor cells. <i>Journal of Comparative Neurology</i> , 2001 , 438, 468-89	3.4	56
26	TRPM5-expressing microvillous cells in the main olfactory epithelium. <i>BMC Neuroscience</i> , 2008 , 9, 114	3.2	55
25	Use it or lose it: molecular evolution of sensory signaling in primates. <i>Pflugers Archiv European Journal of Physiology</i> , 2006 , 453, 125-31	4.6	49
24	Extracellular acid block and acid-enhanced inactivation of the Ca2+-activated cation channel TRPM5 involve residues in the S3-S4 and S5-S6 extracellular domains. <i>Journal of Biological Chemistry</i> , 2005 , 280, 20691-9	5.4	48
23	Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS ONE, 2007, 2, e88	3 4 .7	44
22	A proton current associated with sour taste: distribution and functional properties. <i>FASEB Journal</i> , 2015 , 29, 3014-26	0.9	31
21	Structures of the otopetrin proton channels Otop1 and Otop3. <i>Nature Structural and Molecular Biology</i> , 2019 , 26, 518-525	17.6	28
20	Pheromone transduction in the vomeronasal organ. <i>Current Opinion in Neurobiology</i> , 1996 , 6, 487-93	7.6	24
19	TRPM5. Handbook of Experimental Pharmacology, 2014 , 222, 489-502	3.2	22
18	Synthesis and biological activity of phospholipase C-resistant analogues of phosphatidylinositol 4,5-bisphosphate. <i>Journal of the American Chemical Society</i> , 2006 , 128, 5642-3	16.4	21

17	A TRP channel contributes to insulin secretion by pancreatic ells. <i>Islets</i> , 2010 , 2, 331-3	2	10
16	Sour taste: receptors, cells and circuits. <i>Current Opinion in Physiology</i> , 2021 , 20, 8-15	2.6	9
15	Changing senses: chemosensory signaling and primate evolution. <i>Advances in Experimental Medicine and Biology</i> , 2012 , 739, 206-17	3.6	8
14	Thermal gating of TRP ion channels: food for thought?. <i>Science Signaling</i> , 2006 , 2006, pe12	8.8	8
13	The Ca2+-Activated TRP Channels. Frontiers in Neuroscience, 2006, 203-211		8
12	Activation Stoichiometry and Pore Architecture of TRPA1 Probed with Channel Concatemers. <i>Scientific Reports</i> , 2018 , 8, 17104	4.9	8
11	A double TRPtych: six views of transient receptor potential channels in disease and health. <i>Journal of Neuroscience</i> , 2008 , 28, 11778-84	6.6	6
10	Sex and the single neuron: pheromones excite. <i>Trends in Neurosciences</i> , 2001 , 24, 2-3	13.3	5
9	Requirement for an Otopetrin-like protein for acid taste in <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
8	Cell signaling. Putting the squeeze on phototransduction. <i>Science</i> , 2012 , 338, 200-1	33.3	4
7	Salty Taste: From Transduction to Transmitter Release, Hold the Calcium. <i>Neuron</i> , 2020 , 106, 709-711	13.9	3
6	The Cellular and Molecular Basis of Sour Taste. Annual Review of Physiology, 2021,	23.1	3
5	Changing Taste by Targeting the Ion Channel TRPM5~!2009-12-02~!2010-02-22~!2010-07-26~!. <i>The Open Drug Discovery Journal</i> , 2010 , 2, 98-102		3
4	Transduction Channels in the Vomeronasal Organ 2005 , 135-152		1
3	Requirement for an Otopetrin-Like protein for acid taste in Drosophila		1
2	The evolution of sour taste <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2022 , 289, 2021191	8 4.4	O

TRPC2 and the Molecular Biology of Pheromone Detection in Mammals. *Frontiers in Neuroscience*, **2006**, 45-53