
Irene Sanchez-Andrea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials, 2014, 269, 98-109.	6.5	288
2	Microbial Diversity in Anaerobic Sediments at RÃo Tinto, a Naturally Acidic Environment with a High Heavy Metal Content. Applied and Environmental Microbiology, 2011, 77, 6085-6093.	1.4	205
3	The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nature Communications, 2020, 11, 5090.	5.8	152
4	The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environmental Microbiology, 2021, 23, 2834-2857.	1.8	145
5	Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles, 2015, 19, 39-47.	0.9	128
6	Prospects for harnessing biocide resistance for bioremediation and detoxification. Science, 2018, 360, 743-746.	6.0	114
7	Towards sustainable feedstocks: A guide to electron donors for microbial carbon fixation. Current Opinion in Biotechnology, 2018, 50, 195-205.	3.3	80
8	Enrichment and isolation of acidophilic sulfateâ€reducing bacteria from <scp>T</scp> into <scp>R</scp> iver sediments. Environmental Microbiology Reports, 2013, 5, 672-678.	1.0	75
9	Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage. Applied and Environmental Microbiology, 2012, 78, 4638-4645.	1.4	74
10	Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation, 2009, 20, 789-800.	1.5	72
11	Sulfur Reduction in Acid Rock Drainage Environments. Environmental Science & Technology, 2015, 49, 11746-11755.	4.6	59
12	Insight into the sulfur metabolism of <i>Desulfurella amilsii</i> by differential proteomics. Environmental Microbiology, 2019, 21, 209-225.	1.8	57
13	Anaerobic Degradation of Sulfated Polysaccharides by Two Novel Kiritimatiellales Strains Isolated From Black Sea Sediment. Frontiers in Microbiology, 2019, 10, 253.	1.5	56
14	Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Science and Technology, 2012, 66, 2425-2431.	1.2	48
15	Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1249-1253.	0.8	47
16	Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles, 2012, 16, 829-839.	0.9	38
17	Microbacter margulisiae gen. nov., sp. nov., a propionigenic bacterium isolated from sediments of an acid rock drainage pond. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3936-3942.	0.8	37
18	Ercella succinigenes gen. nov., sp. nov., an anaerobic succinate-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2449-2454.	0.8	36

#	Article	IF	CITATIONS
19	Genome Sequence of Desulfurella amilsii Strain TR1 and Comparative Genomics of Desulfurellaceae Family. Frontiers in Microbiology, 2017, 8, 222.	1.5	35
20	Redox Sensing within the Genus Shewanella. Frontiers in Microbiology, 2017, 8, 2568.	1.5	32
21	Pontiella desulfatans gen. nov., sp. nov., and Pontiella sulfatireligans sp. nov., Two Marine Anaerobes of the Pontiellaceae fam. nov. Producing Sulfated Glycosaminoglycan-like Exopolymers. Microorganisms, 2020, 8, 920.	1.6	31
22	From RÃo Tinto to Mars. Advances in Applied Microbiology, 2011, 77, 41-70.	1.3	28
23	Description of Trichococcus ilyis sp. nov. by combined physiological and in silico genome hybridization analyses. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3957-3963.	0.8	27
24	Enrichment of sulfidogenic bacteria from the human intestinal tract. FEMS Microbiology Letters, 2017, 364, .	0.7	25
25	A case in support of implementing innovative bio-processes in the metal mining industry. FEMS Microbiology Letters, 2016, 363, fnw106.	0.7	23
26	Ecophysiology and Application of Acidophilic Sulfur-Reducing Microorganisms. Grand Challenges in Biology and Biotechnology, 2016, , 141-175.	2.4	22
27	Co-culture of a Novel Fermentative Bacterium, Lucifera butyrica gen. nov. sp. nov., With the Sulfur Reducer Desulfurella amilsii for Enhanced Sulfidogenesis. Frontiers in Microbiology, 2018, 9, 3108.	1.5	22
28	Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans. Frontiers in Microbiology, 2015, 6, 637.	1.5	21
29	Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery. Advances in Microbial Physiology, 2019, 75, 205-231.	1.0	20
30	Biosulfidogenesis Mediates Natural Attenuation in Acidic Mine Pit Lakes. Microorganisms, 2020, 8, 1275.	1.6	19
31	Microbial Geochemistry of the Acidic Saline Pit Lake of Brunita Mine (La Unión,ÂSE Spain). Mine Water and the Environment, 2020, 39, 535-555.	0.9	18
32	Anaerobic microbial methanol conversion in marine sediments. Environmental Microbiology, 2021, 23, 1348-1362.	1.8	15
33	Organic Matter Type Defines the Composition of Active Microbial Communities Originating From Anoxic Baltic Sea Sediments. Frontiers in Microbiology, 2021, 12, 628301.	1.5	13
34	Bacterial glycerol oxidation coupled to sulfate reduction at neutral and acidic pH. Journal of General and Applied Microbiology, 2018, 64, 1-8.	0.4	11
35	An integrated green methodology for the continuous biological removal and fixation of arsenic from acid wastewater through the GAC-catalyzed As(III) oxidation. Chemical Engineering Journal, 2021, 421, 127758.	6.6	11
36	Eubacterium maltosivorans sp. nov., a novel human intestinal acetogenic and butyrogenic bacterium with a versatile metabolism. International Journal of Systematic and Evolutionary Microbiology, 2018, 68. 3546-3550.	0.8	11

#	Article	IF	CITATIONS
37	Novel haloalkaliphilic methanotrophic bacteria: An attempt for enhancing methane bio-refinery. Journal of Environmental Management, 2019, 231, 1091-1099.	3.8	9
38	Comparative genomics and proteomics of <i>Eubacterium maltosivorans</i> : functional identification of trimethylamine methyltransferases and bacterial microcompartments in a human intestinal bacterium with a versatile lifestyle. Environmental Microbiology, 2022, 24, 517-534.	1.8	8
39	Effects of metals on activity and community of sulfate-reducing bacterial enrichments and the discovery of a new heavy metal-resistant SRB from Santos Port sediment (São Paulo, Brazil). Environmental Science and Pollution Research, 2022, 29, 922-935.	2.7	7
40	Sulfur Reduction at Hyperthermoacidophilic Conditions with Mesophilic Anaerobic Sludge as the Inoculum. Environmental Science & Technology, 2020, 54, 14656-14663.	4.6	6
41	Acetate Degradation at Low pH by the Moderately Acidophilic Sulfate Reducer Acididesulfobacillus acetoxydans gen. nov. sp. nov Frontiers in Microbiology, 2022, 13, 816605.	1.5	6
42	Acetotrophic sulfate-reducing consortia develop active biofilms on zeolite and glass beads in batch cultures at initial pH 3. Applied Microbiology and Biotechnology, 2021, 105, 5213-5227.	1.7	3
43	Microbial Communities in Peruvian Acid Mine Drainages: Low-Abundance Sulfate-Reducing Bacteria With High Metabolic Activity. Geomicrobiology Journal, 2022, 39, 867-883.	1.0	3
44	In search of sulfateâ€reducing consortia able to degrade acetate under acidic conditions. Journal of Chemical Technology and Biotechnology, 2021, 96, 1228-1236.	1.6	2
45	Editorial overview: Microbial environmental biotechnology. Current Opinion in Biotechnology, 2018, 50, vii-ix.	3.3	0