Carmen Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9461943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 2009, 27, 185-194.	6.0	1,236
2	Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 2010, 85, 1321-1337.	1.7	379
3	Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnology Advances, 2020, 40, 107501.	6.0	229
4	Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2017, 2, 13-22.	1.8	174
5	Modern aspects of mushroom culture technology. Applied Microbiology and Biotechnology, 2004, 64, 756-762.	1.7	156
6	Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. BioResources, 2010, 5, 2808-2854.	0.5	138
7	Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresource Technology, 2008, 99, 7842-7847.	4.8	83
8	Fungal enzymes for the degradation of polyethylene: Molecular docking simulation and biodegradation pathway proposal. Journal of Hazardous Materials, 2021, 411, 125118.	6.5	58
9	Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling. Science of the Total Environment, 2016, 566-567, 1186-1193.	3.9	57
10	A novel biodegradation pathway of the endocrine-disruptor di(2-ethyl hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicology and Environmental Safety, 2018, 147, 494-499.	2.9	56
11	Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycological Research, 2008, 112, 1080-1084.	2.5	47
12	Microbial capability for the degradation of chemical additives present in petroleum-based plastic products: A review on current status and perspectives. Journal of Hazardous Materials, 2021, 402, 123534.	6.5	47
13	Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotus ostreatus growing on sugar cane bagasse. Bioresource Technology, 2011, 102, 1581-1586.	4.8	43
14	Biodegradation patterns of the endocrine disrupting pollutant di(2-ethyl hexyl) phthalate by Fusarium culmorum. Ecotoxicology and Environmental Safety, 2019, 170, 293-299.	2.9	29
15	Bioactives from Mushroom and Their Application. , 2017, , 23-57.		26
16	Kinetics and pathway of biodegradation of dibutyl phthalate by Pleurotus ostreatus. Fungal Biology, 2018, 122, 991-997.	1.1	25
17	Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: biochemical aspects and preparation of mushroom inoculum. Applied Microbiology and Biotechnology, 2006, 72, 812-815.	1.7	21
18	Fungal biodegradation of dibutyl phthalate and toxicity of its breakdown products on the basis of fungal and bacterial growth. World Journal of Microbiology and Biotechnology, 2014, 30, 2811-2819.	1.7	21

CARMEN SANCHEZ

#	Article	IF	CITATIONS
19	Mycelial Growth and Enzymatic Activities of Fungi Isolated from Recycled Paper Wastes Grown on Di (2-ethylhexyl) phthalate. Polish Journal of Environmental Studies, 2015, 24, 1897-1902.	0.6	21
20	Mineralization of high concentrations of the endocrine disruptor dibutyl phthalate by Fusarium culmorum. 3 Biotech, 2018, 8, 42.	1.1	18
21	Characterization of the growth and laccase activity of strains of Pleurotus ostreatus in submerged fermentation. BioResources, 2011, 6, 282-290.	0.5	15
22	Coordinated cell elongation alone drives tropic bending in stems of the mushroom fruit body of Coprinus cinereus. Canadian Journal of Botany, 1997, 75, 1174-1181.	1.2	13
23	Detection of highly productive strains of Pleurotus ostreatus by their tolerance to 2-deoxy-D-glucose in starch-based media. Mycological Research, 1996, 100, 455-461.	2.5	12
24	In the midst of death we are in life: Further advances in the study of higher fungi. Botanical Journal of Scotland, 1998, 50, 121-135.	0.3	10
25	Conventional histological stains selectively stain fruit body initials of basidiomycetes. Mycological Research, 1999, 103, 315-318.	2.5	10
26	Influence of initial pH of the growing medium on the activity, production and expression profiles of laccases produced by Pleurotus ostreatus in submerged fermentation. Electronic Journal of Biotechnology, 2013, 16, .	1.2	8
27	CaracterÃsticas y usos de los ftalatos. Mexican Journal of Biotechnology, 2017, 2, 145-154.	0.2	6
28	Lentinula edodes Grown on Di(2-ethylhexyl) Phthalate-Containing Media: Mycelial Growth and Enzyme Activities. BioResources, 2015, 10, .	0.5	5
29	Heterologous Expression of Laccase (LACP83) of Pleurotus ostreatus. BioResources, 2017, 12, .	0.5	5
30	Induction of esterase activity during the degradation of high concentrations of the contaminant di(2-ethylhexyl) phthalate by Fusarium culmorum under liquid fermentation conditions. 3 Biotech, 2020, 10, 488.	1.1	5
31	Growth and cutinase activity of Fusarium culmorum grown in solid-state fermentation. Mexican Journal of Biotechnology, 2016, 1, 8-19.	0.2	5
32	Characterization of the Solid-State and Liquid Fermentation for the Production of Laccases of Pleurotus ostreatus. , 0, , .		4
33	Enhanced esterase activity during the degradation of dibutyl phthalate by <i>Fusarium</i> species in liquid fermentation. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	4
34	21st century miniguide to fungal biotechnology. Mexican Journal of Biotechnology, 2019, 5, 11-42.	0.2	4
35	Influence of the substrate on the ultrastructure of Pleurotus pulmonarius fruit body primordia. Applied Microbiology and Biotechnology, 2004, 64, 691-694.	1.7	3
36	Partial characterization of esterases from Fusarium culmorum grown in media supplemented with di (2-ethyl hexyl phthalate) in solid-state and submerged fermentation. Mexican Journal of Biotechnology, 2018, 3, 82-94.	0.2	3

CARMEN SANCHEZ

#	Article	IF	CITATIONS
37	Producción de esterasas por microorganismos: importancia y aplicación industrial. Mexican Journal of Biotechnology, 2019, 4, 25-37.	0.2	3
38	Growth and esterase activity of Fusarium culmorum grown in di(2- ethyl hexyl) phthalate in liquid fermentation. Mexican Journal of Biotechnology, 2019, 4, 51-60.	0.2	3
39	A 21st century miniguide to sporophore morphogenesis and development in Agaricomycetes and their biotechnological potential. Mexican Journal of Biotechnology, 2020, 5, 1-50.	0.2	3
40	Microscopic observations of the early development of Pleurotus pulmonarius fruit bodies. Mycologia, 2006, 98, 682-689.	0.8	2
41	Production of cutinolytic esterase by Fusarium culmorum grown at different apple cutin concentrations in submerged fermentation. Mexican Journal of Biotechnology, 2019, 4, 50-64.	0.2	2
42	Production of laccases, cellulases and xylanases of Pleurotus ostreatus grown in liquid-state fermentation. Mexican Journal of Biotechnology, 2017, 2, 169-176.	0.2	2
43	Analysis on the genotoxicity of glyphosate using the theory of the electron transfer coefficient of quantum chemistry. Mexican Journal of Biotechnology, 2020, 5, 43-53.	0.2	2
44	Mycelial Growth and Fruit Body Nutritional Composition of Pleurotus Species Grown on Different Lignocellulosic Waste-based Media. BioResources, 2018, 13, .	0.5	1
45	Caracterización parcial de esterasas de Fusarium culmorum crecido en presencia de di(2-etil hexil) Tj ETQq1 1 0	784314 rj 0.2	gBŢ /Overlact
46	Neurospora sitophila crecido en medios adicionados con dibutil ftalato en fermentación sumergida: Cinética de crecimiento y actividad de esterasa. Mexican Journal of Biotechnology, 2019, 4, 61-71.	0.2	1
47	Partial characterization of esterases from Fusarium culmorum grown in media supplemented with di (2-ethyl hexyl phthalate) in solid-state and submerged fermentation. Mexican Journal of Biotechnology, 2018, 3, 82-94.	0.2	1
48	Optimum pH for di(2-ethylhexyl) phthalate degradation by Fusarium culmorum in submerged fermentation. Mexican Journal of Biotechnology, 2020, 5, 71-82.	0.2	1
49	Effect of surfactant Tween 80 on growth and esterase production of Fusarium culmorum in liquid fermentation. Mexican Journal of Biotechnology, 2020, 5, 64-79.	0.2	1
50	Bioactive compounds from fungi with antiviral activities: Mechanism of action and biosynthetic pathways. Mexican Journal of Biotechnology, 2021, 6, 165-189.	0.2	0
51	Bioremediation of hydraulic fracturing sludge. Mexican Journal of Biotechnology, 2016, 1, 29-47.	0.2	0
52	Lacasas de Pleurotus ostreatus. Mexican Journal of Biotechnology, 2017, 2, 122-134.	0.2	0
53	Herramientas bioinformáticas usadas en el estudio de enzimas fenoloxidasas del género Pleurotus. Mexican Journal of Biotechnology, 2018, 3, 95-118.	0.2	0
54	Tween 80-induced esterase production by Trichoderma harzianum in submerged fermentation: An esterase activity assay using α-naphthyl acetate as substrate. Mexican Journal of Biotechnology, 2022, 7, 1-17.	0.2	0