
MarÃ-a T GarcÃ-a-Cubero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9461588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus recovery from organic waste for its agronomic valorization: technical and economic evaluation. Journal of Chemical Technology and Biotechnology, 2022, 97, 167-178.	3.2	3
2	Liquid fertilizer production from organic waste by conventional and microwave-assisted extraction technologies: Techno-economic and environmental assessment. Science of the Total Environment, 2022, 806, 150904.	8.0	13
3	Bioprocess intensification for acetone-butanol-ethanol fermentation from brewer's spent grain: Fed-batch strategies coupled with in-situ gas stripping. Biomass and Bioenergy, 2022, 156, 106327.	5.7	11
4	Green biorefinery for sugar beet pulp valorisation: Microwave hydrothermal processing for pectooligosaccharides recovery and biobutanol production. Industrial Crops and Products, 2022, 184, 115060.	5.2	13
5	Efficient biobutanol production by acetone-butanol-ethanol fermentation from spent coffee grounds with microwave assisted dilute sulfuric acid pretreatment. Bioresource Technology, 2021, 320, 124348.	9.6	28
6	Microwaveâ€essisted deep eutectic solvent extraction of phenolic compounds from brewer's spent grain. Journal of Chemical Technology and Biotechnology, 2021, 96, 481-490.	3.2	29
7	A biorefinery approach for the valorization of spent coffee grounds to produce antioxidant compounds and biobutanol. Biomass and Bioenergy, 2021, 147, 106026.	5.7	28
8	Exploring the use of high solid loadings in enzymatic hydrolysis to improve biobutanol production from brewers' spent grains. Canadian Journal of Chemical Engineering, 2021, 99, 2607-2618.	1.7	2
9	Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step. Bioresource Technology, 2021, 329, 124929.	9.6	18
10	Acetic acid as catalyst for microwave-assisted pretreatment of sugarcane straw aids highly specific butyric acid bioproduction. Industrial Crops and Products, 2020, 157, 112936.	5.2	12
11	Bioprocess intensification for isopropanol, butanol and ethanol (IBE) production by fermentation from sugarcane and sweet sorghum juices through a gas stripping-pervaporation recovery process. Fuel, 2020, 281, 118593.	6.4	30
12	A biorefinery based on brewer`s spent grains: Arabinoxylans recovery by microwave assisted pretreatment integrated with butanol production. Industrial Crops and Products, 2020, 158, 113044.	5.2	19
13	Recovery of organic carbon from municipal mixed waste compost for the production of fertilizers. Journal of Cleaner Production, 2020, 265, 121805.	9.3	23
14	Integral valorization of cellulosic and hemicellulosic sugars for biobutanol production: ABE fermentation of the whole slurry from microwave pretreated brewer's spent grain. Biomass and Bioenergy, 2020, 135, 105524.	5.7	23
15	Efficient use of brewer's spent grain hydrolysates in <scp>ABE</scp> fermentation by <i>Clostridium beijerinkii</i> . Effect of high solid loads in the enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2020, 95, 2393-2402.	3.2	13
16	Comparison of mild alkaline and oxidative pretreatment methods for biobutanol production from brewer's spent grains. Industrial Crops and Products, 2019, 130, 409-419.	5.2	47
17	Microwave assisted hydrothermal as greener pretreatment of brewer's spent grains for biobutanol production. Chemical Engineering Journal, 2019, 368, 1045-1055.	12.7	83
18	Synergistic positive effect of organic acids on the inhibitory effect of phenolic compounds on Acetone-Butanol-Ethanol (ABE) production. Food and Bioproducts Processing, 2018, 108, 117-125.	3.6	14

#	Article	IF	CITATIONS
19	Continuous bioproduction of 1,3â€propanediol from biodiesel raw glycerol: Operation with free and immobilized cells of <i>Clostridium butyricum</i> DSM 10702. Canadian Journal of Chemical Engineering, 2017, 95, 819-826.	1.7	9
20	Biobutanol production from brewer's spent grain hydrolysates by Clostridium beijerinckii. Bioresource Technology, 2017, 244, 166-174.	9.6	72
21	Valorization of crude glycerol from the biodiesel industry to 1,3â€propanediol by <i>Clostridium butyricum</i> DSM 10702: Influence of pretreatment with ion exchange resins. Canadian Journal of Chemical Engineering, 2016, 94, 1242-1248.	1.7	13
22	Efficient acetone–butanol–ethanol production by Clostridium beijerinckii from sugar beet pulp. Bioresource Technology, 2015, 190, 332-338.	9.6	61
23	Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food and Bioproducts Processing, 2015, 94, 306-312.	3.6	52
24	Acetone–butanol–ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: Efficient use of penta and hexa carbohydrates. Bioresource Technology, 2014, 167, 198-205.	9.6	76
25	Optimization of the enzymatic hydrolysis conditions of steamâ€exploded wheat straw for maximum glucose and xylose recovery. Journal of Chemical Technology and Biotechnology, 2013, 88, 237-246.	3.2	31
26	Influence of aeration on bioethanol production from ozonized wheat straw hydrolysates using Pichia stipitis. Bioresource Technology, 2013, 133, 51-58.	9.6	37
27	An analysis of lignin removal in a fixed bed reactor by reaction of cereal straws with ozone. Bioresource Technology, 2012, 107, 229-234.	9.6	55
28	Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresource Technology, 2011, 102, 10868-10874.	9.6	168
29	Use of weak cation exchange resin Lewatit S 8528 as alternative to strong ion exchange resins for calcium salt removal. Journal of Food Engineering, 2010, 97, 569-573.	5.2	19
30	Production of biomass by Spirulina maxima using sugar beet vinasse in growth media. New Biotechnology, 2010, 27, 851-856.	4.4	45
31	Production of 1,3 Propanediol from Glycerol by C. Butyricum DSM 10702. Journal of Biotechnology, 2010, 150, 376-376.	3.8	0
32	Glycerol hydrogenolysis to 1, 2 propanediol over Ru/C catalyst. Catalysis Communications, 2010, 12, 122-126.	3.3	34
33	Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology, 2009, 100, 1608-1613.	9.6	265
34	Evolution of colorants in sugarbeet juices during decolorization using styrenic resins. Journal of Food Engineering, 2008, 89, 429-434.	5.2	38
35	Teaching and learning strategies and evaluation changes for the adaptation of the Chemical Engineering degree to EHES. Education for Chemical Engineers, 2008, 3, e33-e39.	4.8	8
36	Biological decolourisation of wastewater from molasses fermentation by <i>Trametes versicolor</i> in an airlift reactor. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 772-778.	1.7	2

#	Article	IF	CITATIONS
37	Study of coloured components formed in sugar beet processing. Food Chemistry, 2004, 86, 421-433.	8.2	119
38	Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere, 2003, 51, 893-900.	8.2	148
39	Removal of coloured compounds from sugar solutions by adsorption onto anionic resins: equilibrium and kinetic study. Separation and Purification Technology, 2002, 29, 199-205.	7.9	20
40	Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors. Bioresource Technology, 2001, 76, 245-251.	9.6	112
41	Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresource Technology, 2001, 80, 137-142.	9.6	179