List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9461580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innovations impacting the future of transportation: an overview of connected, automated, shared, and electric technologies. Transportation Letters, 2023, 15, 490-509.	1.8	4
2	Impact of Flextime on Departure Time Choice for Home-Based Commuting Trips in Austin, Texas. Transportation Research Record, 2022, 2676, 446-459.	1.0	4
3	Reducing Greenhouse Gas Emissions from Long-Distance Travel Business: How Far Can We Go?. Transportation Research Record, 2022, 2676, 472-486.	1.0	6
4	Shared automated vehicle fleet operations for first-mile last-mile transit connections with dynamic pooling. Computers, Environment and Urban Systems, 2022, 92, 101730.	3.3	14
5	How does machine learning compare to conventional econometrics for transport data sets? A test of ML versus MLE. Growth and Change, 2022, 53, 342-376.	1.3	6
6	Quantifying the emissions impact of repurposed electric vehicle battery packs in residential settings. Journal of Energy Storage, 2022, 47, 103628.	3.9	4
7	Our self-driving future will be shaped by policies of today. Nature Electronics, 2022, 5, 2-4.	13.1	10
8	Are Electric Vehicle Targets Enough? The Decarbonization Benefits of Managed Charging and Second-Life Battery Uses. Transportation Research Record, 2022, 2676, 24-43.	1.0	5
9	Dynamic ride-sharing impacts of greater trip demand and aggregation at stops in shared autonomous vehicle systems. Transportation Research, Part A: Policy and Practice, 2022, 160, 114-125.	2.0	10
10	Investigating risk factors associated with pedestrian crash occurrence and injury severity in Texas. Traffic Injury Prevention, 2022, 23, 283-289.	0.6	10
11	Access Benefits of Shared Autonomous Vehicle Fleets: Focus on Vulnerable Populations. Transportation Research Record, 2022, 2676, 568-582.	1.0	2
12	Synergies between repositioning and charging strategies for shared autonomous electric vehicle fleets. Transportation Research, Part D: Transport and Environment, 2022, 108, 103314.	3.2	11
13	Predicting Pedestrian Crashes in Texas' Intersections and Midblock Segments. Sustainability, 2022, 14, 7164.	1.6	4
14	Technologies for congestion pricing. Research in Transportation Economics, 2021, 90, 100863.	2.2	9
15	Traffic and Welfare Impacts of Credit-Based Congestion Pricing Applications: An Austin Case Study. Transportation Research Record, 2021, 2675, 10-24.	1.0	3
16	Use of Shared Automated Vehicles for First-Mile Last-Mile Service: Micro-Simulation of Rail-Transit Connections in Austin, Texas. Transportation Research Record, 2021, 2675, 135-149.	1.0	39
17	Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago. Journal of Transport Geography, 2021, 91, 102944.	2.3	41
18	Strategic Evacuation for Hurricanes and Regional Events with and without Autonomous Vehicles. Transportation Research Record, 2021, 2675, 1398-1409.	1.0	2

#	Article	IF	CITATIONS
19	Estimating the Deep Decarbonization Benefits of the Electric Mobility Transition: A Review of Managed Charging Strategies and Second-Life Battery Uses. , 2021, , .		1
20	America's fleet evolution in an automated future. Research in Transportation Economics, 2021, 90, 101107.	2.2	10
21	SAV Operations on a Bus Line Corridor: Travel Demand, Service Frequency, and Vehicle Size. Journal of Advanced Transportation, 2021, 2021, 1-15.	0.9	3
22	An analysis of pedestrian crash trends and contributing factors in Texas. Journal of Transport and Health, 2021, 22, 101090.	1.1	14
23	Impacts of shared automated vehicles on airport access and operations, with opportunities for revenue recovery: Case Study of Austin, Texas. Research in Transportation Economics, 2021, 90, 101128.	2.2	1
24	A system of shared autonomous vehicles for Chicago: Understanding the effects of geofencing the service. Journal of Transport and Land Use, 2021, 14, 933-948.	0.7	12
25	Vehicles That Drive Themselves: What to Expect With Autonomous Vehicles. , 2021, , 19-25.		1
26	What will autonomous trucking do to U.S. trade flows? Application of the random-utility-based multi-regional input–output model. Transportation, 2020, 47, 2529-2556.	2.1	10
27	Modeling Americans' autonomous vehicle preferences: A focus on dynamic ride-sharing, privacy & long-distance mode choices. Technological Forecasting and Social Change, 2020, 150, 119792.	6.2	120
28	Anticipating long-distance travel shifts due to self-driving vehicles. Journal of Transport Geography, 2020, 82, 102547.	2.3	34
29	Bringing the efficiency of electricity market mechanisms to multimodal mobility across congested transportation systems. Transportation Research, Part A: Policy and Practice, 2020, 131, 58-69.	2.0	11
30	Electric vehicle charging station locations: Elastic demand, station congestion, and network equilibrium. Transportation Research, Part D: Transport and Environment, 2020, 78, 102179.	3.2	112
31	Shared autonomous vehicle fleet performance: Impacts of trip densities and parking limitations. Transportation Research, Part D: Transport and Environment, 2020, 89, 102577.	3.2	20
32	First-Mile-Last-Mile Collector-Distributor System using Shared Autonomous Mobility. Transportation Research Record, 2020, 2674, 638-647.	1.0	19
33	How will self-driving vehicles affect U.S. megaregion traffic? The case of the Texas Triangle. Research in Transportation Economics, 2020, 84, 101003.	2.2	19
34	Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide. Transportation Research, Part A: Policy and Practice, 2020, 138, 105-126.	2.0	27
35	A Repositioning Method for Shared Autonomous Vehicles Operation. Procedia Computer Science, 2020, 170, 791-798.	1.2	6
36	Costs and Benefits of Electrifying and Automating Bus Transit Fleets. Sustainability, 2020, 12, 3977.	1.6	54

#	Article	IF	CITATIONS
37	City Land Use and Rent Dynamics with Location Externalities and Zoning Regulations: A Dynamic Spatial General Equilibrium Model. , 2020, , 185-212.		1
38	An Optimization-based Strategy for Shared Autonomous Vehicle Fleet Repositioning. , 2020, , .		6
39	An Optimization-based Strategy for Shared Autonomous Vehicle Fleet Repositioning. , 2020, , .		0
40	Animal-vehicle collisions in Texas: How to protect travelers and animals on roadways. Accident Analysis and Prevention, 2019, 131, 157-170.	3.0	29
41	How does the built environment affect interest in the ownership and use of self-driving vehicles?. Journal of Transport Geography, 2019, 78, 115-134.	2.3	13
42	Benefits and Costs of Ride-Sharing in Shared Automated Vehicles across Austin, Texas: Opportunities for Congestion Pricing. Transportation Research Record, 2019, 2673, 548-556.	1.0	43
43	Development of Traffic-Based Congestion Pricing and Its Application to Automated Vehicles. Transportation Research Record, 2019, 2673, 536-547.	1.0	7
44	Fleet performance and cost evaluation of a shared autonomous electric vehicle (SAEV) fleet: A case study for Austin, Texas. Transportation Research, Part A: Policy and Practice, 2019, 121, 374-385.	2.0	65
45	Emissions and noise mitigation through use of electric motorcycles. Transportation Safety and Environment, 2019, 1, 164-175.	1.1	9
46	Sharing vehicles and sharing rides in real-time: Opportunities for self-driving fleets. Advances in Transport Policy and Planning, 2019, 4, 59-85.	0.7	12
47	Congestion pricing in a world of self-driving vehicles: An analysis of different strategies in alternative future scenarios. Transportation Research Part C: Emerging Technologies, 2019, 98, 167-185.	3.9	136
48	Optimal locations of U.S. fast charging stations for long-distance trip completion by battery electric vehicles. Journal of Cleaner Production, 2019, 214, 452-461.	4.6	106
49	A Low-Cost GPS-Data-Enhanced Approach for Traffic Network Evaluations. International Journal of Intelligent Transportation Systems Research, 2019, 17, 9-17.	0.6	2
50	Shared autonomous electric vehicle (SAEV) operations across the Austin, Texas network with charging infrastructure decisions. Transportation Research Part C: Emerging Technologies, 2018, 89, 222-233.	3.9	150
51	Are we ready to embrace connected and self-driving vehicles? A case study of Texans. Transportation, 2018, 45, 641-675.	2.1	185
52	Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas. Transportation, 2018, 45, 143-158.	2.1	385
53	Three Methods for Anticipating and Understanding Uncertainty of Outputs from Transportation and Land Use Models. Transportation Research Record, 2018, 2672, 12-22.	1.0	5
54	Analyzing the dynamic ride-sharing potential for shared autonomous vehicle fleets using cellphone data from Orlando, Florida. Computers, Environment and Urban Systems, 2018, 71, 177-185.	3.3	78

#	Article	IF	CITATIONS
55	Anticipating the Regional Impacts of Connected and Automated Vehicle Travel in Austin, Texas. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .	0.8	51
56	Indian vehicle ownership and travel behavior: A case study of Bengaluru, Delhi and Kolkata. Research in Transportation Economics, 2018, 71, 2-8.	2.2	36
57	Emissions and exposure costs of electric versus conventional vehicles: A case study in Texas. International Journal of Sustainable Transportation, 2017, 11, 486-492.	2.1	13
58	A Synthesis of Spatial Models for Multivariate Count Responses. Advances in Spatial Science, 2017, , 221-237.	0.3	1
59	A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application. Computers, Environment and Urban Systems, 2017, 64, 373-383.	3.3	165
60	Forecasting Americans' long-term adoption of connected and autonomous vehicle technologies. Transportation Research, Part A: Policy and Practice, 2017, 95, 49-63.	2.0	362
61	Economic Effects of Automated Vehicles. Transportation Research Record, 2017, 2606, 106-114.	1.0	166
62	Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation. Transportation, 2017, 44, 1261-1278.	2.1	154
63	Carsharing's life-cycle impacts on energy use and greenhouse gas emissions. Transportation Research, Part D: Transport and Environment, 2016, 47, 276-284.	3.2	164
64	Shifts in Long-Distance Travel Mode Due to Automated Vehicles: Statewide Mode-Shift Simulation Experiment and Travel Survey Analysis. Transportation Research Record, 2016, 2566, 1-11.	1.0	50
65	A Multivariate Spatial Analysis for Anticipating New Firm Counts. Advances in Econometrics, 2016, , 167-193.	0.2	0
66	A direct-demand model for bicycle counts: the impacts of level of service and other factors. Environment and Planning B: Planning and Design, 2016, 43, 93-107.	1.7	31
67	Assessing public opinions of and interest in new vehicle technologies: An Austin perspective. Transportation Research Part C: Emerging Technologies, 2016, 67, 1-14.	3.9	695
68	Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions. Transportation Research, Part A: Policy and Practice, 2016, 94, 243-254.	2.0	260
69	Optimal policies in cities with congestion and agglomeration externalities: Congestion tolls, labor subsidies, and place-based strategies. Journal of Urban Economics, 2016, 95, 64-86.	2.4	24
70	Management of a Shared Autonomous Electric Vehicle Fleet: Implications of Pricing Schemes. Transportation Research Record, 2016, 2572, 37-46.	1.0	146
71	Operations of Shared Autonomous Vehicle Fleet for Austin, Texas, Market. Transportation Research Record, 2016, 2563, 98-106.	1.0	181
72	Congestion pricing effects on firm and household location choices in monocentric and polycentric cities. Regional Science and Urban Economics, 2016, 58, 1-12.	1.4	23

#	Article	IF	CITATIONS
73	The problem of cold starts: A closer look at mobile source emissions levels. Transportation Research, Part D: Transport and Environment, 2016, 43, 123-132.	3.2	129
74	Welfare Analysis using Logsum Differences versus Rule of Half: Series of Case Studies. Transportation Research Record, 2015, 2530, 73-83.	1.0	13
75	Hybrid Electric Vehicle Ownership and Fuel Economy across Texas. Transportation Research Record, 2015, 2495, 53-64.	1.0	23
76	Motorcycle Use in the United States: Crash Experiences, Safety Perspectives, and Countermeasures. Journal of Transportation Safety and Security, 2015, 7, 20-39.	1.1	12
77	Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research, Part A: Policy and Practice, 2015, 77, 167-181.	2.0	1,534
78	Where are the electric vehicles? A spatial model for vehicle-choice count data. Journal of Transport Geography, 2015, 43, 181-188.	2.3	51
79	Air quality impacts of electric vehicle adoption in Texas. Transportation Research, Part D: Transport and Environment, 2015, 34, 208-218.	3.2	68
80	Anticipating Roadway Expansion and Tolling Impacts: Toolkit for Abstracted Networks. Journal of the Urban Planning and Development Division, ASCE, 2014, 140, 04014010.	0.8	2
81	A spatial autoregressive multinomial probit model for anticipating land-use change in Austin, Texas. Annals of Regional Science, 2014, 52, 251-278.	1.0	15
82	The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transportation Research Part C: Emerging Technologies, 2014, 40, 1-13.	3.9	854
83	Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure. Energy Policy, 2014, 68, 232-242.	4.2	56
84	Models for anticipating non-motorized travel choices, and the role of the built environment. Transport Policy, 2014, 35, 117-126.	3.4	67
85	Positioning infrastructure and technologies for lowâ€carbon urbanization. Earth's Future, 2014, 2, 533-547.	2.4	41
86	Forecasting greenhouse gas emissions from urban regions: microsimulation of land use and transport patterns in Austin, Texas. Journal of Transport Geography, 2013, 33, 220-229.	2.3	25
87	Understanding spatial filtering for analysis of land use-transport data. Journal of Transport Geography, 2013, 31, 123-131.	2.3	25
88	A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods. Accident Analysis and Prevention, 2013, 60, 71-84.	3.0	174
89	Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression. Journal of Transport Geography, 2013, 29, 24-32.	2.3	83
90	Locating Electric Vehicle Charging Stations. Transportation Research Record, 2013, 2385, 28-36.	1.0	194

#	Article	IF	CITATIONS
91	The impact of weight matrices on parameter estimation and inference: A case study of binary response using land-use data. Journal of Transport and Land Use, 2013, 6, 75-85.	0.7	18
92	Tracking Transportation and Industrial Production across a Nation. Transportation Research Record, 2012, 2269, 99-109.	1.0	15
93	Roles of Vehicle Footprint, Height, and Weight in Crash Outcomes. Transportation Research Record, 2012, 2280, 89-99.	1.0	11
94	A Bivariate Multinomial Probit Model for Trip Scheduling: Bayesian Analysis of the Work Tour. Transportation Science, 2012, 46, 405-424.	2.6	8
95	Welfare calculations in discrete choice settings: An exploratory analysis of error term correlation with finite populations. Transport Policy, 2012, 19, 76-84.	3.4	11
96	The dynamic spatial multinomial probit model: analysis of land use change using parcel-level data. Journal of Transport Geography, 2012, 24, 77-88.	2.3	30
97	Predicting the market potential of plug-in electric vehicles using multiday GPS data. Energy Policy, 2012, 46, 225-233.	4.2	126
98	Electrified Vehicle Technology Trends, Infrastructure Implications, and Cost Comparisons. Journal of the Transportation Research Forum, 2012, 51, .	0.2	26
99	Anticipating new-highway impacts: Opportunities for welfare analysis and credit-based congestion pricing. Transportation Research, Part A: Policy and Practice, 2011, 45, 825-838.	2.0	8
100	Evolution of the Light-Duty Vehicle Fleet. Transportation Research Record, 2011, 2252, 107-117.	1.0	14
101	Change in Land use through Microsimulation of Market Dynamics. Transportation Research Record, 2011, 2255, 125-136.	1.0	4
102	Analysis of large truck crash severity using heteroskedastic ordered probit models. Accident Analysis and Prevention, 2011, 43, 370-380.	3.0	164
103	Americans' Contributions to Climate Change: Opportunities for Meeting Carbon Targets. Journal of the Urban Planning and Development Division, ASCE, 2011, 137, 91-100.	0.8	3
104	Application of UrbanSim to the Austin, Texas, Region: Integrated-Model Forecasts for the Year 2030. Journal of the Urban Planning and Development Division, ASCE, 2011, 137, 238-247.	0.8	18
105	Anticipation of Land use Change through use of Geographically Weighted Regression Models for Discrete Response. Transportation Research Record, 2011, 2245, 111-123.	1.0	36
106	Opportunities for and Impacts of Carsharing: A Survey of the Austin, Texas Market. International Journal of Sustainable Transportation, 2011, 5, 135-152.	2.1	78
107	Congestion pricing under operational, supply-side uncertainty. Transportation Research Part C: Emerging Technologies, 2010, 18, 519-535.	3.9	32
108	Maximum Entropy Method for Subnetwork Origin–Destination Trip Matrix Estimation. Transportation Research Record, 2010, 2196, 111-119.	1.0	39

#	Article	IF	CITATIONS
109	A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics. Transportation Research Part B: Methodological, 2010, 44, 699-715.	2.8	28
110	The continuous cross-nested logit model: Formulation and application for departure time choice. Transportation Research Part B: Methodological, 2010, 44, 646-661.	2.8	45
111	Lessons Learned in Developing and Applying Land Use Model Systems. Transportation Research Record, 2009, 2133, 75-82.	1.0	5
112	Applications of Integrated Transport and Gravity-Based Land Use Models for Policy Analysis. Transportation Research Record, 2009, 2133, 123-132.	1.0	13
113	Application of the dynamic spatial ordered probit model:â€ [∞] Patterns of land development change in Austin, Texas. Papers in Regional Science, 2009, 88, 345-366.	1.0	37
114	BAYSIAN INFERENCE FOR ORDERED RESPONSE DATA WITH A DYNAMIC SPATIALâ€ORDERED PROBIT MODEL. Journal of Regional Science, 2009, 49, 877-913.	2.1	33
115	Predicting the distribution of households and employment: a seemingly unrelated regression model with two spatial processes. Journal of Transport Geography, 2009, 17, 369-376.	2.3	17
116	Forecasting Network Data. Transportation Research Record, 2009, 2105, 100-108.	1.0	74
117	Understanding and Accommodating Risk and Uncertainty in Toll Road Projects. Transportation Research Record, 2009, 2132, 106-112.	1.0	30
118	Continuous Departure Time Models. Transportation Research Record, 2009, 2132, 13-24.	1.0	19
119	Anticipating Welfare Impacts via Travel Demand Forecasting Models. Transportation Research Record, 2009, 2133, 11-22.	1.0	3
120	Neighborhood impacts on land use change: a multinomial logit model of spatial relationships. Annals of Regional Science, 2008, 42, 321-340.	1.0	49
121	A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accident Analysis and Prevention, 2008, 40, 964-975.	3.0	302
122	Credit-based congestion pricing: A Dallas-Fort Worth application. Transport Policy, 2008, 15, 23-32.	3.4	29
123	Visioning versus Modeling: Analyzing the Land-Use-Transportation Futures of Urban Regions. Journal of the Urban Planning and Development Division, ASCE, 2008, 134, 97-109.	0.8	30
124	Self-Selection in Home Choice. Transportation Research Record, 2008, 2077, 54-61.	1.0	125
125	Reducing Burden and Sample Sizes in Multiday Household Travel Surveys. Transportation Research Record, 2008, 2064, 12-18.	1.0	41
126	Tracking Size, Location, and Interactions of Businesses. Transportation Research Record, 2008, 2077, 113-121.	1.0	16

8

#	Article	IF	CITATIONS
127	Microsimulation of Residential Land Development and Household Location Choices. Transportation Research Record, 2008, 2077, 106-112.	1.0	26
128	Specification and estimation of a spatially and temporally autocorrelated seemingly unrelated regression model: application to crash rates in China. Transportation, 2007, 34, 281-300.	2.1	31
129	On-line marginal-cost pricing across networks: Incorporating heterogeneous users and stochastic equilibria. Transportation Research Part B: Methodological, 2006, 40, 424-435.	2.8	44
130	Bayesian Multivariate Poisson Regression for Models of Injury Count, by Severity. Transportation Research Record, 2006, 1950, 24-34.	1.0	74
131	Tracking Land Cover Change in Mixed Logit Model. Transportation Research Record, 2006, 1977, 112-120.	1.0	8
132	Tracking Land Cover Change in Mixed Logit Model: Recognizing Temporal and Spatial Effects. Transportation Research Record, 2006, 1977, 112-120.	1.0	8
133	Road Pricing Simulations: Traffic, Land Use and Welfare Impacts for Austin, Texas. Transportation Planning and Technology, 2006, 29, 1-23.	0.9	35
134	Evaluation of the Trans-Texas Corridor Proposal: Application and Enhancements of the Random-Utility-Based Multiregional Input–Output Model. Journal of Transportation Engineering, 2006, 132, 531-539.	0.9	21
135	Spatial Econometric Models for Panel Data. Transportation Research Record, 2005, 1902, 80-90.	1.0	10
136	Use of Heteroscedastic Ordered Logit Model to Study Severity of Occupant Injury. Transportation Research Record, 2005, 1908, 195-204.	1.0	36
137	Safety Effects of Speed Limit Changes. Transportation Research Record, 2005, 1908, 148-158.	1.0	26
138	Tracking land use, transport, and industrial production using random-utility-based multiregional input–output models: Applications for Texas trade. Journal of Transport Geography, 2005, 13, 275-286.	2.3	51
139	Credit-based congestion pricing: a policy proposal and the public's response. Transportation Research, Part A: Policy and Practice, 2005, 39, 671-690.	2.0	80
140	Safety Effects of Speed Limit Changes: Use of Panel Models, Including Speed, Use, and Design Variables. Transportation Research Record, 2005, 1908, 148-158.	1.0	37
141	Credit-Based Congestion Pricing: Travel, Land Value, and Welfare Impacts. Transportation Research Record, 2004, 1864, 45-53.	1.0	46
142	The random-utility-based multiregional input–output model: solution existence and uniqueness. Transportation Research Part B: Methodological, 2004, 38, 789-807.	2.8	42
143	Chaos Theory and Transportation Systems: Instructive Example. Transportation Research Record, 2004, 1897, 9-17.	1.0	60
144	Overall injury risk to different drivers: combining exposure, frequency, and severity models. Accident Analysis and Prevention, 2003, 35, 441-450.	3.0	144

#	Article	IF	CITATIONS
145	Accessibility Indices: Connection to Residential Land Prices and Location Choices. Transportation Research Record, 2002, 1805, 25-34.	1.0	69
146	Property Values and Highway Expansion: Timing, Size, Location, and Use Effects. Transportation Research Record, 2002, 1812, 191-200.	1.0	24
147	Driver injury severity: an application of ordered probit models. Accident Analysis and Prevention, 2002, 34, 313-321.	3.0	451
148	A model for time- and budget-constrained activity demand analysis. Transportation Research Part B: Methodological, 2001, 35, 255-269.	2.8	42
149	Modeling traffic's flow-density relation: Accommodation of multiple flow regimes and traveler types. Transportation, 2001, 28, 363-374.	2.1	34
150	Effect of Light-Duty Trucks on the Capacity of Signalized Intersections. Journal of Transportation Engineering, 2000, 126, 506-512.	0.9	31
151	Travel demand and the 3Ds: Density, diversity, and design. Transportation Research, Part D: Transport and Environment, 1997, 2, 199-219.	3.2	2,691
152	Spatial Econometric Models for Panel Data: Incorporating Spatial and Temporal Data. , 0, .		16
153	Bayesian Multivariate Poisson Regression for Models of Injury Count, by Severity. , 0, .		85
154	Predicting a Vehicle's Distance Traveled from Short-duration Data. , 0, , .		1
155	Travel Time Impacts of Using Shared Automated Vehicles along a Fixed-Route Transit Corridor. Findings, 0, , .	0.0	0
156	Long-Distance Travel Impacts of COVID-19 Across the United States. Findings, 0, , .	0.0	0