Guido Hermey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9461300/publications.pdf Version: 2024-02-01

CUIDO HEDMEV

#	Article	IF	CITATIONS
1	Deciphering the transcriptomic signature of synaptic activity. Neural Regeneration Research, 2022, 17, 82.	1.6	0
2	The adaptor protein PICK1 targets the sorting receptor SorLA. Molecular Brain, 2022, 15, 18.	1.3	3
3	Converging roles of PSENEN/PEN2 and CLN3 in the autophagy-lysosome system. Autophagy, 2022, 18, 2068-2085.	4.3	12
4	Neuronal activity regulates alternative exon usage. Molecular Brain, 2020, 13, 148.	1.3	7
5	CLN3 regulates endosomal function by modulating Rab7A effector interactions. Journal of Cell Science, 2020, 133, .	1.2	29
6	Amyloidosis causes downregulation of <i>SorLA</i> , <i>SorCS1</i> and <i>SorCS3</i> expression in mice. Biological Chemistry, 2019, 400, 1181-1189.	1.2	13
7	SORCS 1 and SORCS 3 control energy balance and orexigenic peptide production. EMBO Reports, 2018, 19, .	2.0	36
8	Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Molecular Neurobiology, 2018, 55, 5809-5829.	1.9	54
9	Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRP1 and SorLA. Cellular and Molecular Life Sciences, 2018, 75, 301-322.	2.4	36
10	Neuronal activity-regulated alternative mRNA splicing. International Journal of Biochemistry and Cell Biology, 2017, 91, 184-193.	1.2	23
11	Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo. Scientific Reports, 2017, 7, 45101.	1.6	48
12	Revisiting the neuronal localization and trafficking of <scp>CLN</scp> 3 in juvenile neuronal ceroid lipofuscinosis. Journal of Neurochemistry, 2016, 139, 456-470.	2.1	24
13	Sor <scp>CS</scp> 1 variants and amyloid precursor protein (<scp>APP</scp>) are coâ€transported in neurons but only Sor <scp>CS</scp> 1c modulates anterograde <scp>APP</scp> transport. Journal of Neurochemistry, 2015, 135, 60-75.	2.1	20
14	Intracellular sorting pathways of the amyloid precursor protein provide novel neuroprotective strategies. Neural Regeneration Research, 2015, 10, 1727.	1.6	0
15	Human sorCS1 binds sortilin and hampers its cellular functions. Biochemical Journal, 2014, 457, 277-288.	1.7	12
16	Spatiotemporal expression analysis of the growth factor receptor SorCS3. Journal of Comparative Neurology, 2014, 522, 3386-3402.	0.9	28
17	SorCS2 Regulates Dopaminergic Wiring and Is Processed into an Apoptotic Two-Chain Receptor in Peripheral Glia. Neuron, 2014, 82, 1074-1087.	3.8	76
18	Genome-Wide Profiling of the Activity-Dependent Hippocampal Transcriptome. PLoS ONE, 2013, 8, e76903.	1.1	38

Guido Hermey

#	Article	IF	CITATIONS
19	Targeting amyloid precursor protein. Annals of Neurology, 2011, 69, 8-10.	2.8	4
20	The Vps10p-domain receptor family. Cellular and Molecular Life Sciences, 2009, 66, 2677-2689.	2.4	177
21	Different Motifs Regulate Trafficking of SorCS1 Isoforms. Traffic, 2008, 9, 980-994.	1.3	39
22	Sorting by the Cytoplasmic Domain of the Amyloid Precursor Protein Binding Receptor SorLA. Molecular and Cellular Biology, 2007, 27, 6842-6851.	1.1	166
23	Tumour necrosis factor α-converting enzyme mediates ectodomain shedding of Vps10p-domain receptor family members. Biochemical Journal, 2006, 395, 285-293.	1.7	104
24	Functional Organization of the Sortilin Vps10p Domain. Journal of Biological Chemistry, 2004, 279, 50221-50229.	1.6	70
25	The three sorCS genes are differentially expressed and regulated by synaptic activity. Journal of Neurochemistry, 2004, 88, 1470-1476.	2.1	66
26	The mosaic receptor sorLA/LR11 binds components of the plasminogen-activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related) Tj ETQq0 0 0 rgBT /	Ov ert ock I	10 4 750 457 ⁻
27	Characterization of sorCS1, an Alternatively Spliced Receptor with Completely Different Cytoplasmic Domains That Mediate Different Trafficking in Cells. Journal of Biological Chemistry, 2003, 278, 7390-7396.	1.6	42
28	Identification of SorCS2, a novel member of the VPS10 domain containing receptor family, prominently expressed in the developing mouse brain. Mechanisms of Development, 2001, 100, 335-338.	1.7	56
29	SorCS1, a member of the novel sorting receptor family, is localized in somata and dendrites of neurons throughout the murine brain. Neuroscience Letters, 2001, 313, 83-87.	1.0	34
30	Transient expression of SorCS in developing telencephalic and mesencephalic structures of the mouse. NeuroReport, 2001, 12, 29-32.	0.6	16
31	Alternative splicing of murine SorCS leads to two forms of the receptor that differ completely in their cytoplasmic tails. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1491, 350-354.	2.4	10
32	Expression of the 100-kDa neurotensin receptor sortilin during mouse embryonal development. Molecular Brain Research, 1999, 65, 216-219.	2.5	51
33	Identification of a Novel Seven-Transmembrane Receptor with Homology to Glycoprotein Receptors and Its Expression in the Adult and Developing Mouse. Biochemical and Biophysical Research Communications, 1999, 254, 273-279.	1.0	29
34	Identification and Characterization of SorCS, a Third Member of a Novel Receptor Family. Biochemical and Biophysical Research Communications, 1999, 266, 347-351.	1.0	67
35	A Novel G Protein-Coupled Receptor with Homology to Neuropeptide and Chemoattractant Receptors Expressed during Bone Development. Biochemical and Biophysical Research Communications, 1997, 233, 336-342.	1.0	47