List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9461183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 2003, 63, 1317-1324.	3.8	1,242
2	Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 2006, 13, 171-180.	2.4	1,184
3	Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 2005, 97, 2014-2025.	1.3	712
4	Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology, 2010, 70, 1742-1747.	3.8	710
5	Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 2006, 66, 2776-2784.	3.8	699
6	On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 2014, 105, 15-27.	3.8	669
7	Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 2015, 22, 935-969.	2.4	624
8	Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 2016, 83, 2-18.	3.8	573
9	Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 2007, 67, 2535-2544.	3.8	535
10	Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Composites Science and Technology, 2006, 66, 2187-2196.	3.8	433
11	Mechanical properties and morphology of impact modified polypropylene-wood flour composites. Journal of Applied Polymer Science, 1998, 67, 1503-1513.	1.3	393
12	Characterization of Cellulose Whiskers and Their Nanocomposites by Atomic Force and Electron Microscopy. Biomacromolecules, 2005, 6, 3160-3165.	2.6	323
13	The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. Journal of Applied Polymer Science, 2006, 101, 300-310.	1.3	318
14	Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water. Carbohydrate Polymers, 2014, 112, 668-676.	5.1	308
15	Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 2015, 22, 1075-1090.	2.4	305
16	Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale. Applied Composite Materials, 2007, 14, 89-103.	1.3	294
17	Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. Journal of Hazardous Materials, 2015, 294, 177-185.	6.5	287
18	Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose, 2010, 17, 299-307.	2.4	275

#	Article	IF	CITATIONS
19	Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology, 2008, 68, 908-914.	3.8	267
20	Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2486-2492.	3.8	265
21	Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Composite Interfaces, 2007, 14, 617-630.	1.3	260
22	Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose, 2010, 17, 19-30.	2.4	254
23	Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose, 2014, 21, 449-461.	2.4	222
24	Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. European Polymer Journal, 2013, 49, 950-956.	2.6	209
25	Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydrate Polymers, 2014, 109, 7-15.	5.1	207
26	Morphology and mechanical properties of unidirectional sisal- epoxy composites. Journal of Applied Polymer Science, 2002, 84, 2358-2365.	1.3	205
27	Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: Mechanical, thermal and optical properties. Composites Science and Technology, 2015, 106, 149-155.	3.8	198
28	High Quality Flax Fibre Composites Manufactured by the Resin Transfer Moulding Process. Journal of Reinforced Plastics and Composites, 2001, 20, 621-627.	1.6	193
29	Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties. Composites Part A: Applied Science and Manufacturing, 2012, 43, 735-741.	3.8	190
30	The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Composites Science and Technology, 2009, 69, 1847-1853.	3.8	187
31	Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Industrial Crops and Products, 2012, 40, 232-238.	2.5	187
32	Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose, 2011, 18, 1085-1095.	2.4	182
33	The effect of crosslinking on the properties of polyethylene/wood flour composites. Composites Science and Technology, 2005, 65, 1468-1479.	3.8	174
34	Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture. Journal of Membrane Science, 2016, 514, 418-428.	4.1	172
35	Nanocellulose-Based Interpenetrating Polymer Network (IPN) Hydrogels for Cartilage Applications. Biomacromolecules, 2016, 17, 3714-3723.	2.6	162
36	Orientation of cellulose nanowhiskers in polyvinyl alcohol. Applied Physics A: Materials Science and Processing, 2007, 87, 641-643.	1.1	152

#	Article	IF	CITATIONS
37	A Comparison of Modified and Unmodified Cellulose Nanofiber Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion. Journal of Polymers and the Environment, 2012, 20, 991-997.	2.4	152
38	Nanofibers from bagasse and rice straw: process optimization and properties. Wood Science and Technology, 2012, 46, 193-205.	1.4	151
39	Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties. Composites Part A: Applied Science and Manufacturing, 2016, 83, 89-97.	3.8	147
40	Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics. Cellulose, 2017, 24, 2499-2510.	2.4	146
41	Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1922-1931.	3.8	142
42	Mechanical Properties of Natural Fibre Mat Reinforced Thermoplastic. Applied Composite Materials, 2000, 7, 403-414.	1.3	140
43	Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass and Bioenergy, 2011, 35, 146-152.	2.9	138
44	The use of silane technology in crosslinking polyethylene/wood flour composites. Composites Part A: Applied Science and Manufacturing, 2006, 37, 752-765.	3.8	136
45	Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Composites Part A: Applied Science and Manufacturing, 2016, 88, 226-233.	3.8	130
46	A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nan of ibres. Carbohydrate Polymers, 2015, 118, 1-8.	5.1	127
47	A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydrate Polymers, 2009, 75, 85-89.	5.1	123
48	Characterization of starch based nanocomposites. Journal of Materials Science, 2007, 42, 8163-8171.	1.7	119
49	All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Composites Part A: Applied Science and Manufacturing, 2009, 40, 2031-2037.	3.8	119
50	Silane crosslinked wood plastic composites: Processing and properties. Composites Science and Technology, 2006, 66, 2177-2186.	3.8	117
51	Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. Journal of Colloid and Interface Science, 2016, 464, 175-182.	5.0	111
52	Biocomposite Hydrogels with Carboxymethylated, Nanofibrillated Cellulose Powder for Replacement of the Nucleus Pulposus. Biomacromolecules, 2011, 12, 1419-1427.	2.6	110
53	Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose, 2015, 22, 521-534.	2.4	107
54	Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue. ACS Applied Materials & Interfaces, 2015, 7, 13022-13028.	4.0	105

#	Article	IF	CITATIONS
55	Influence of thermoplastic elastomers on adhesion in polyethylene-wood flour composites. Journal of Applied Polymer Science, 1998, 68, 1845-1855.	1.3	104
56	Cross-Linked Chitosan/Chitin Crystal Nanocomposites with Improved Permeation Selectivity and pH Stability. Biomacromolecules, 2009, 10, 1627-1632.	2.6	101
57	Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Industrial Crops and Products, 2016, 92, 84-92.	2.5	100
58	3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Advances, 2016, 6, 5999-6007.	1.7	98
59	Properties of as-prepared and freeze-dried hydrogels made from poly(vinyl alcohol) and cellulose nanocrystals using freeze-thaw technique. European Polymer Journal, 2016, 81, 386-396.	2.6	97
60	Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydrate Polymers, 2012, 87, 2291-2298.	5.1	94
61	Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Materials and Design, 2016, 92, 846-852.	3.3	94
62	The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites. Journal of Applied Polymer Science, 1998, 69, 201-209.	1.3	92
63	Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose, 2017, 24, 3969-3980.	2.4	88
64	Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Composites Part A: Applied Science and Manufacturing, 2011, 42, 1275-1282.	3.8	83
65	Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Industrial Crops and Products, 2014, 58, 212-219.	2.5	83
66	Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO ₂ Capture and Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 7432-7441.	4.0	79
67	Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydrate Polymers, 2014, 112, 494-501.	5.1	78
68	Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals. Composites Part A: Applied Science and Manufacturing, 2016, 83, 56-62.	3.8	78
69	Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose. Sensors, 2015, 15, 24681-24697.	2.1	77
70	Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissue engineering applications. International Journal of Biological Macromolecules, 2019, 136, 796-803.	3.6	77
71	The Effect of Processing on Fiber Dispersion, Fiber Length, and Thermal Degradation of Bleached Sulfite Cellulose Fiber Polypropylene Composites. Journal of Thermoplastic Composite Materials, 2009, 22, 115-133.	2.6	69
72	Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose, 2016, 23, 1925-1938.	2.4	69

#	Article	IF	CITATIONS
73	Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals. RSC Advances, 2016, 6, 9221-9231.	1.7	69
74	Reinforcing efficiency of nanocellulose in polymers. Reactive and Functional Polymers, 2014, 85, 151-156.	2.0	68
75	Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites. Journal of Applied Polymer Science, 2009, 112, 2001-2009.	1.3	67
76	Poly(methyl vinyl ether- <i>co</i> -maleic acid)â^Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers. Biomacromolecules, 2010, 11, 2660-2666.	2.6	66
77	Crosslinked fibrous composites based on cellulose nanofibers and collagen with in situ pH induced fibrillation. Cellulose, 2012, 19, 139-150.	2.4	66
78	Biocompatible Fibrous Networks of Cellulose Nanofibres and Collagen Crosslinked Using Genipin: Potential as Artificial Ligament/Tendons. Macromolecular Bioscience, 2013, 13, 289-298.	2.1	65
79	Membranes Based on Cellulose Nanofibers and Activated Carbon for Removal of Escherichia coli Bacteria from Water. Polymers, 2017, 9, 335.	2.0	65
80	Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Composites Science and Technology, 2016, 123, 49-56.	3.8	63
81	Novel bionanocomposites: processing, properties and potential applications. Plastics, Rubber and Composites, 2009, 38, 396-405.	0.9	62
82	Glucomannan composite films with cellulose nanowhiskers. Cellulose, 2010, 17, 69-81.	2.4	60
83	Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Materials Letters, 2012, 71, 28-31.	1.3	60
84	Meltâ€spun polylactic acid fibers: Effect of cellulose nanowhiskers on processing and properties. Journal of Applied Polymer Science, 2013, 127, 274-281.	1.3	60
85	Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties. Composites Science and Technology, 2016, 126, 35-42.	3.8	59
86	Environmental friendly and sustainable gas barrier on porous materials: Nanocellulose coatings prepared using spin- and dip-coating. Materials and Design, 2016, 93, 19-25.	3.3	59
87	Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers. Cellulose, 2018, 25, 259-268.	2.4	59
88	Mechanical properties and morphology of flax fiber reinforced melamine-formaldehyde composites. Polymer Composites, 2001, 22, 568-578.	2.3	57
89	Potential of municipal solid waste paper as raw material for production of cellulose nanofibres. Waste Management, 2018, 80, 319-326.	3.7	57
90	Thermoplastic polymer impregnation of cellulose nanofibre networks: Morphology, mechanical and optical properties. Composites Part A: Applied Science and Manufacturing, 2014, 58, 30-35.	3.8	52

#	Article	IF	CITATIONS
91	Structure property relation of hybrid biocomposites based on jute, viscose and polypropylene: The effect of the fibre content and the length on the fracture toughness and the fatigue properties. Composites Part A: Applied Science and Manufacturing, 2016, 83, 169-175.	3.8	52
92	A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydrate Polymers, 2020, 230, 115571.	5.1	52
93	Improved interaction between wood and synthetic polymers in wood/polymer composites. Wood Science and Technology, 1996, 30, 197.	1.4	51
94	Using maleic anhydride grafted poly(lactic acid) as a compatibilizer in poly(lactic acid)/layered-silicate nanocomposites. Journal of Applied Polymer Science, 2006, 102, 1852-1862.	1.3	50
95	The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites. Journal of Applied Polymer Science, 2009, 114, 2723-2730.	1.3	50
96	Cellulose nanofibres and cellulose nanowhiskers based natural rubber composites: Diffusion, sorption, and permeation of aromatic organic solvents. Journal of Applied Polymer Science, 2012, 124, 1614-1623.	1.3	47
97	Effect of xylanase pretreatment of rice strawÂunbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose, 2018, 25, 2939-2953.	2.4	47
98	EFFECT OF CELLULOSE NANOFIBERS ISOLATED FROM BAMBOO PULP RESIDUE ON VULCANIZED NATURAL RUBBER. BioResources, 2012, 7, .	0.5	44
99	Isolation and characterization of cellulose nanofibers from aspen wood using derivatizing and non-derivatizing pretreatments. Cellulose, 2020, 27, 185-203.	2.4	44
100	Durability and mechanical properties of silane cross-linked wood thermoplastic composites. Composites Science and Technology, 2007, 67, 2728-2738.	3.8	43
101	Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Composites Science and Technology, 2011, 71, 1886-1892.	3.8	43
102	Highly redispersible sugar beet nanofibers as reinforcement in bionanocomposites. Cellulose, 2017, 24, 2177-2189.	2.4	43
103	Use of Bacterial Cellulose and Crosslinked Cellulose Nanofibers Membranes for Removal of Oil from Oil-in-Water Emulsions. Polymers, 2017, 9, 388.	2.0	43
104	Profile extrusion and mechanical properties of crosslinked wood–thermoplastic composites. Polymer Composites, 2006, 27, 184-194.	2.3	42
105	Extrusion processing of green biocomposites: Compounding, fibrillation efficiency, and fiber dispersion. Journal of Applied Polymer Science, 2014, 131, .	1.3	42
106	Aligned plasticized polylactic acid cellulose nanocomposite tapes: Effect of drawing conditions. Composites Part A: Applied Science and Manufacturing, 2018, 104, 101-107.	3.8	42
107	Cellulose nanofiber aerogels impregnated with bio-based epoxy using vacuum infusion: Structure, orientation and mechanical properties. Composites Science and Technology, 2018, 155, 64-71.	3.8	42
108	Silane-crosslinking of recycled low-density polyethylene/wood composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 678-683.	3.8	41

#	Article	IF	CITATIONS
109	Improved antifungal activity and stability of chitosan nanofibers using cellulose nanocrystal on banknote papers. Carbohydrate Polymers, 2018, 189, 229-237.	5.1	41
110	Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: Mechanical and thermal properties. Journal of Applied Polymer Science, 2018, 135, 45710.	1.3	41
111	Lightweight, flexible, and multifunctional anisotropic nanocellulose-based aerogels for CO2 adsorption. Cellulose, 2020, 27, 2695-2707.	2.4	41
112	Regenerated cellulose fibers as impact modifier in long jute fiber reinforced polypropylene composites: Effect on mechanical properties, morphology, and fiber breakage. Journal of Applied Polymer Science, 2015, 132, .	1.3	39
113	Dispersion and reinforcing effect of carrot nanofibers on biopolyurethane foams. Materials and Design, 2016, 110, 526-531.	3.3	39
114	All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals. Cellulose, 2014, 21, 2665-2678.	2.4	38
115	Well-dispersed cellulose nanocrystals in hydrophobic polymers by <i>in situ</i> polymerization for synthesizing highly reinforced bio-nanocomposites. Nanoscale, 2018, 10, 11797-11807.	2.8	38
116	Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making. Carbohydrate Polymers, 2018, 197, 92-99.	5.1	38
117	A method for preparing epoxy-cellulose nanofiber composites with an oriented structure. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105515.	3.8	38
118	Moisture absorption behavior and its impact on the mechanical properties of cellulose whiskersâ€based polyvinylacetate nanocomposites. Polymer Engineering and Science, 2011, 51, 2136-2142.	1.5	37
119	Triethyl Citrate (TEC) as a Dispersing Aid in Polylactic Acid/Chitin Nanocomposites Prepared via Liquid-Assisted Extrusion. Polymers, 2017, 9, 406.	2.0	37
120	High-Strength, High-Toughness Aligned Polymer-Based Nanocomposite Reinforced with Ultralow Weight Fraction of Functionalized Nanocellulose. Biomacromolecules, 2018, 19, 4075-4083.	2.6	37
121	Water purification ultrafiltration membranes using nanofibers from unbleached and bleached rice straw. Scientific Reports, 2020, 10, 11278.	1.6	37
122	Seaweed-Derived Alginate–Cellulose Nanofiber Aerogel for Insulation Applications. ACS Applied Materials & Interfaces, 2021, 13, 34899-34909.	4.0	37
123	The effect of pre-softened wood chips on wood fibre aspect ratio and mechanical properties of wood–polymer composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 2110-2116.	3.8	36
124	Green Carbon Nanofiber Networks for Advanced Energy Storage. ACS Applied Energy Materials, 2020, 3, 3530-3540.	2.5	36
125	The Structure and Mechanical Properties of Cellulose Nanocomposites Prepared by Twin Screw Extrusion. ACS Symposium Series, 2006, , 114-131.	0.5	35
126	Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure. European Polymer Journal, 2017, 86, 188-199.	2.6	34

#	Article	IF	CITATIONS
127	Biodegradation and ecotoxicological impact of cellulose nanocomposites in municipal solid waste composting. International Journal of Biological Macromolecules, 2018, 111, 264-270.	3.6	34
128	Promoted hydrogel formation of lignin-containing arabinoxylan aerogel using cellulose nanofibers as a functional biomaterial. RSC Advances, 2018, 8, 38219-38228.	1.7	34
129	Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose. Cellulose, 2010, 17, 793-802.	2.4	33
130	Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments. Composites Science and Technology, 2017, 150, 79-86.	3.8	32
131	Plasticizing and crosslinking effects of borate additives on the structure and properties of poly(vinyl) Tj ETQq1 1	0.784314 1.7	rgBT /Overlo
132	Nanocomposite Film Based on Cellulose Acetate and Lignin-Rich Rice Straw Nanofibers. Materials, 2019, 12, 595.	1.3	31
133	Randomly oriented and aligned cellulose fibres reinforced with cellulose nanowhiskers, prepared by electrospinning. Plastics, Rubber and Composites, 2011, 40, 57-64.	0.9	30
134	Crystallization of triethylâ€citrateâ€plasticized poly(lactic acid) induced by chitin nanocrystals. Journal of Applied Polymer Science, 2019, 136, 47936.	1.3	30
135	Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. Journal of Reinforced Plastics and Composites, 2014, 33, 26-36.	1.6	29
136	Vacuum infusion of cellulose nanofibre network composites: Influence of porosity on permeability and impregnation. Materials and Design, 2016, 95, 204-211.	3.3	29
137	Switchable ionic liquids enable efficient nanofibrillation of wood pulp. Cellulose, 2017, 24, 3265-3279.	2.4	29
138	Hetero-Porous, High-Surface Area Green Carbon Aerogels for the Next-Generation Energy Storage Applications. Nanomaterials, 2021, 11, 653.	1.9	29
139	Plastics and Composites from Polylactic Acid. , 2004, , 149-165.		28
140	Characterization of microcrystalline cellulose and cellulose long fiber modified by iron salt. Carbohydrate Polymers, 2010, 80, 35-43.	5.1	28
141	Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersion. Composites Part A: Applied Science and Manufacturing, 2018, 109, 538-545.	3.8	28
142	Synergistic effect of chitin nanocrystals and orientations induced by solid-state drawing on PLA-based nanocomposite tapes. Composites Science and Technology, 2018, 162, 140-145.	3.8	28
143	Toughening effect of cellulose nanowhiskers on polyvinyl acetate: Fracture toughness and viscoelastic analysis. Polymer Composites, 2011, 32, 1492-1498.	2.3	27
144	Chitosan/rice straw nanofibers nanocomposites: Preparation, mechanical, and dynamic thermomechanical properties. Journal of Applied Polymer Science, 2012, 125, E216.	1.3	27

#	Article	IF	CITATIONS
145	Introduction to Cellulose Nanocomposites. ACS Symposium Series, 2006, , 2-8.	0.5	25
146	Properties of cellulose nanofibre networks prepared from never-dried and dried paper mill sludge. Journal of Cleaner Production, 2018, 197, 765-771.	4.6	25
147	Electrospinnability of bionanocomposites with high nanocrystal loadings: The effect of nanocrystal surface characteristics. Carbohydrate Polymers, 2016, 147, 464-472.	5.1	23
148	Influence of wood flour moisture content on the degree of silane-crosslinking and its relationship to structure–property relations of wood–thermoplastic composites. Composites Science and Technology, 2009, 69, 1045-1050.	3.8	22
149	Toward eco-efficient production of natural nanofibers from industrial residue: Eco-design and quality assessment. Journal of Cleaner Production, 2020, 255, 120274.	4.6	22
150	Thermal Conductivity of Cellulose Fibers in Different Size Scales and Densities. Biomacromolecules, 2021, 22, 3800-3809.	2.6	22
151	Effect of Unbleached Rice Straw Cellulose Nanofibers on the Properties of Polysulfone Membranes. Polymers, 2019, 11, 938.	2.0	19
152	Large-scale manufacturing of ultra-strong, strain-responsive poly(lactic acid)-based nanocomposites reinforced with cellulose nanocrystals. Composites Science and Technology, 2020, 194, 108144.	3.8	19
153	Effect of Chitin Nanocrystals on Crystallization and Properties of Poly(lactic acid)-Based Nanocomposites. Polymers, 2020, 12, 726.	2.0	19
154	Ice-Templated Cellulose Nanofiber Filaments as a Reinforcement Material in Epoxy Composites. Nanomaterials, 2021, 11, 490.	1.9	19
155	Strategies for Preparation of Cellulose Whiskers from Microcrystalline Cellulose as Reinforcement in Nanocomposites. ACS Symposium Series, 2006, , 10-25.	0.5	18
156	Melt spun cellulose nanocomposite fibres: comparison of two dispersion techniques. Plastics, Rubber and Composites, 2014, 43, 15-24.	0.9	18
157	Adsorption isotherms and mechanisms of Cu(<scp>ii</scp>) sorption onto TEMPO-mediated oxidized cellulose nanofibers. RSC Advances, 2016, 6, 107759-107767.	1.7	18
158	Metallo-Terpyridine-Modified Cellulose Nanofiber Membranes for Papermaking Wastewater Purification. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 439-447.	1.9	18
159	One-step twin-screw extrusion process of cellulose fibers and hydroxyethyl cellulose to produce fibrillated cellulose biocomposite. Cellulose, 2020, 27, 8105-8119.	2.4	18
160	Processing of wood chip–plastic composites: effect on wood particle size, microstructure and mechanical properties. Plastics, Rubber and Composites, 2011, 40, 49-56.	0.9	17
161	Improved durability of lignocellulose-polypropylene composites manufactured using twin-screw extrusion. Composites Part A: Applied Science and Manufacturing, 2017, 101, 265-272.	3.8	16
162	The Effect of Recycling on Wood-Fiber Thermoplastic Composites. Polymers, 2020, 12, 1750.	2.0	16

#	Article	IF	CITATIONS
163	Bacterial Cellulose Network from Kombucha Fermentation Impregnated with Emulsion-Polymerized Poly(methyl methacrylate) to Form Nanocomposite. Polymers, 2021, 13, 664.	2.0	16
164	Strategies to Improve the Properties of Amaranth Protein Isolate-Based Thin Films for Food Packaging Applications: Nano-Layering through Spin-Coating and Incorporation of Cellulose Nanocrystals. Nanomaterials, 2020, 10, 2564.	1.9	14
165	Self-reinforced nanocomposite by partial dissolution of cellulose microfibrils in ionic liquid. Journal of Composite Materials, 2012, 46, 1305-1311.	1.2	13
166	Improving tensile strength and moisture barrier properties of gelatin using microfibrillated cellulose. Journal of Composite Materials, 2013, 47, 1977-1985.	1.2	13
167	Processing of Bionanocomposites: Solution Casting. Materials and Energy, 2014, , 35-52.	2.5	13
168	Effect of long fiber thermoplastic extrusion process on fiber dispersion and mechanical properties of viscose fiber/polypropylene composites. Polymers for Advanced Technologies, 2016, 27, 685-692.	1.6	13
169	One-Step Twin-Screw Extrusion Process to Fibrillate Deep Eutectic Solvent-Treated Wood to Be Used in Wood Fiber-Polypropylene Composites. ACS Sustainable Chemistry and Engineering, 2021, 9, 883-893.	3.2	13
170	Catalytically transformed low energy intensive 2D-layered and single crystal-graphitic renewable carbon cathode conductors. Carbon, 2021, 183, 243-250.	5.4	13
171	Effect of pectin extraction method on properties of cellulose nanofibers isolated from sugar beet pulp. Cellulose, 2021, 28, 10905-10920.	2.4	13
172	Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces. Surface Engineering, 2018, 34, 825-831.	1.1	12
173	Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications. Biomacromolecules, 2021, 22, 3202-3215.	2.6	12
174	The Effect of Decreased Fiber Size in Wheat Straw/Polyvinyl Alcohol Composites. Journal of Biobased Materials and Bioenergy, 2009, 3, 75-80.	0.1	12
175	Strong Aqueous Gels of Cellulose Nanofibers and Nanowhiskers Isolated from Softwood Flour. Tappi Journal, 2011, 10, 7-14.	0.2	12
176	Modification of cellulose nanofibre surfaces by He/NH3 plasma at atmospheric pressure. Cellulose, 2019, 26, 7185-7194.	2.4	11
177	Investigation of Structure and Chemical Composition of Carbon Nanofibers Developed From Renewable Precursor. Frontiers in Materials, 2019, 6, .	1.2	11
178	Cellulose Nanocomposite Hydrogels: From Formulation to Material Properties. Frontiers in Chemistry, 2020, 8, 655.	1.8	11
179	Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly(hydroxybutyrate) Biopolymer. Polymers, 2022, 14, 562.	2.0	11
180	Ice-Templating of Lignin and Cellulose Nanofiber-Based Carbon Aerogels: Implications for Energy Storage Applications. ACS Applied Nano Materials, 2022, 5, 7954-7966.	2.4	11

#	Article	IF	CITATIONS
181	Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels. ACS Applied Bio Materials, 2020, 3, 6510-6520.	2.3	10
182	Comparison of tension wood and normal wood for oxidative nanofibrillation and network characteristics. Cellulose, 2021, 28, 1085-1104.	2.4	10
183	Monolithic carbon aerogels from bioresources and their application for CO2 adsorption. Microporous and Mesoporous Materials, 2021, 323, 111236.	2.2	10
184	The Influence of a SBS Compatibilizer in Polyethylene-Wood Flour Composites. Holzforschung, 1998, 52, 661-666.	0.9	9
185	Nanocelluloses and their use in composite materials. EXPRESS Polymer Letters, 2012, 6, 687-687.	1.1	9
186	Impact toughness, viscoelastic behavior, and morphology of polypropylene–jute–viscose hybrid composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	9
187	Functional Nanocomposite Films of Poly(Lactic Acid) with Well-Dispersed Chitin Nanocrystals Achieved Using a Dispersing Agent and Liquid-Assisted Extrusion Process. Molecules, 2021, 26, 4557.	1.7	9
188	Electrochemical Properties of Biobased Carbon Aerogels Decorated with Graphene Dots Synthesized from Biochar. ACS Applied Electronic Materials, 2021, 3, 4699-4710.	2.0	9
189	Effects of molding temperature, pressure and time on polyvinyl alcohol nanocomposites properties produced by freeze drying technique. Industrial Crops and Products, 2018, 121, 1-9.	2.5	7
190	Melt compounded nanocomposites with semiâ€interpenetrated network structure based on natural rubber, polyethylene, and carrot nanofibers. Journal of Applied Polymer Science, 2018, 135, 45961.	1.3	7
191	Influence of Dispersion and Orientation on Polyamide-6 Cellulose Nanocomposites Manufactured through Liquid-Assisted Extrusion. Nanomaterials, 2022, 12, 818.	1.9	6
192	Size exclusion and affinity-based removal of nanoparticles with electrospun cellulose acetate membranes infused with functionalized cellulose nanocrystals. Materials and Design, 2022, 217, 110654.	3.3	6
193	Thermal characterization and electrical properties of Fe-modified cellulose long fibers and micro crystalline cellulose. Journal of Thermal Analysis and Calorimetry, 2011, 104, 841-847.	2.0	5
194	The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall. Nanomaterials, 2021, 11, 1179.	1.9	5
195	Orientation of Polylactic Acid–Chitin Nanocomposite Films via Combined Calendering and Uniaxial Drawing: Effect on Structure, Mechanical, and Thermal Properties. Nanomaterials, 2021, 11, 3308.	1.9	5
196	Natural Resources and Residues for Production of Bionanomaterials. Materials and Energy, 2014, , 19-33.	2.5	4
197	Technologies for Separation of Cellulose Nanofibers. Materials and Energy, 2014, , 53-71.	2.5	4
198	Semi-IPN of biopolyurethane, benzyl starch, and cellulose nanofibers: Structure, thermal and mechanical properties. Journal of Applied Polymer Science, 2016, 133, .	1.3	4

#	Article	IF	CITATIONS
199	Thermoconformational Behavior of Cellulose Nanofiber Films as a Device Substrate and Their Superior Flexibility and Durability to Glass. ACS Applied Materials & Interfaces, 2021, 13, 40853-40862.	4.0	4
200	Melt Compounding Process of Cellulose Nanocomposites. Materials and Energy, 2014, , 53-68.	2.5	3
201	Characterization of Nanocomposites Structure. Materials and Energy, 2014, , 89-105.	2.5	3
202	Oriented Carbon Fiber Networks by Design from Renewables for Electrochemical Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 12142-12154.	3.2	3
203	Bionanomaterials: Separation Processes, Characterization, and Properties. Materials and Energy, 2014, , 1-3.	2.5	2
204	Nanocellulose and Nanochitin in Membrane Applications. Materials and Energy, 2014, , 247-259.	2.5	2
205	Aligned-porous-structured poly(vinyl alcohol) foams with cellulose nanocrystals. AIP Conference Proceedings, 2018, , .	0.3	2
206	Thermal gravimetric analysis of in-situ crosslinked nanocellulose whiskers • poly(methyl vinyl) Tj ETQq0 0 0 rgE	BT /Overloc	:k 10 Tf 50 4

207	Liquid Composite Molding. Materials and Energy, 2014, , 219-232.	2.5	1
208	Novel Applications of Nanocellulose: Lightweight Sandwich Composites for Transportation. , 2017, , .		1
209	Manufacture and application of lignin-based carbon fibers and lignin-based carbon nanofibers. , 2022, , 203-236.		1
210	Chemical and molecular structure transformations in atomistic conformation of cellulose nanofibers under thermal environment. Npj Materials Degradation, 2022, 6, .	2.6	1
211	Moisture and Gas Barrier Properties of Cellulose Nanocrystals in Thin Films. Materials and Energy, 2014, , 231-246.	2.5	0
212	Bionanocomposites: Processing Methods, Characterization, and Properties. Materials and Energy, 2014, , 1-5.	2.5	0
213	Reinforcing Efficiency of Nanocelluloses in Polymer Nanocomposites. Materials and Energy, 2014, , 131-145.	2.5	0
214	Nanofibre distribution in composites manufactured with epoxy reinforced with nanofibrillated cellulose: model prediction and verification. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012011.	0.3	0