Leonardo Petruzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9460757/publications.pdf

Version: 2024-02-01

33 papers

1,207 citations

16 h-index 433756 31 g-index

34 all docs

34 docs citations

times ranked

34

1647 citing authors

#	Article	IF	CITATIONS
1	Functional Beverages: The Emerging Side of Functional Foods. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 1192-1206.	5.9	322
2	Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 668-691.	5.9	154
3	Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 2-62.	5.9	131
4	Microbial Resources and Enological Significance: Opportunities and Benefits. Frontiers in Microbiology, 2017, 8, 995.	1.5	99
5	Microbial Spoilage of Foods. , 2017, , 1-21.		40
6	Study of Saccharomyces cerevisiae W13 as a functional starter for the removal of ochratoxin A. Food Control, 2014, 35, 373-377.	2.8	37
7	Using physical approaches for the attenuation of lactic acid bacteria in an organic rice beverage. Food Microbiology, 2016, 53, 1-8.	2.1	37
8	Antifungal and Antibacterial Effect of Propolis: A Comparative Hit for Food-Borne Pseudomonas, Enterobacteriaceae and Fungi. Foods, 2020, 9, 559.	1.9	36
9	Decontamination of ochratoxin A by yeasts: possible approaches and factors leading to toxin removal in wine. Applied Microbiology and Biotechnology, 2014, 98, 6555-6567.	1.7	34
10	Brewer's yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains. Food Reviews International, 2016, 32, 341-363.	4.3	33
11	Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives. Journal of Food Science, 2017, 82, 1291-1301.	1.5	30
12	Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging. Toxins, 2015, 7, 4350-4365.	1.5	29
13	InÂvivo stability of the complex ochratoxin A – Saccharomyces cerevisiae starter strains. Food Control, 2015, 50, 516-520.	2.8	29
14	Yeast cells as adsorbing tools to remove ochratoxin <scp>A</scp> in a model wine. International Journal of Food Science and Technology, 2014, 49, 936-940.	1.3	26
15	Selection of Autochthonous Saccharomyces cerevisiae Strains as Wine Starters Using a Polyphasic Approach and Ochratoxin a Removal. Journal of Food Protection, 2014, 77, 1168-1177.	0.8	23
16	Ochratoxin A Removal by Yeasts after Exposure to Simulated Human Gastrointestinal Conditions. Journal of Food Science, 2016, 81, M2756-M2760.	1.5	21
17	Ochratoxin A removal by <i>Saccharomyces cerevisiae</i> strains: effect of wineâ€related physicochemical factors. Journal of the Science of Food and Agriculture, 2013, 93, 2110-2115.	1.7	17
18	Ochratoxin A released back into the medium by <i>Saccharomyces cerevisiae</i> as a function of the strain, washing medium and fermentative conditions. Journal of the Science of Food and Agriculture, 2014, 94, 3291-3295.	1.7	15

#	Article	IF	Citations
19	A Focus on Quality and Safety Traits of <i>Saccharomyces cerevisiae</i> Isolated from Uva di Troia Grape Variety. Journal of Food Science, 2017, 82, 124-133.	1.5	15
20	The Inoculation of Probiotics In Vivo Is a Challenge: Strategies to Improve Their Survival, to Avoid Unpleasant Changes, or to Enhance Their Performances in Beverages. Beverages, 2020, 6, 20.	1.3	14
21	An In Vitro Fermentation Study on the Effects of Gluten FriendlyTM Bread on Microbiota and Short Chain Fatty Acids of Fecal Samples from Healthy and Celiac Subjects. Frontiers in Microbiology, 2017, 8, 1722.	1.5	13
22	Effect of Physical and Chemical Treatments on Viability, Sub-Lethal Injury, and Release of Cellular Components from Bacillus clausii and Bacillus coagulans Spores and Cells. Foods, 2020, 9, 1814.	1.9	9
23	Viability, Sublethal Injury, and Release of Cellular Components From Alicyclobacillus acidoterrestris Spores and Cells After the Application of Physical Treatments, Natural Extracts, or Their Components. Frontiers in Nutrition, 2021, 8, 700500.	1.6	9
24	Use of microfungi in the treatment of oak chips: possible effects on wine. Journal of the Science of Food and Agriculture, 2010, 90, 2617-2626.	1.7	7
25	How to routinely assess transition, adhesion and survival of probiotics into the gut: a case study on propionibacteria. International Journal of Food Science and Technology, 2018, 53, 484-490.	1.3	7
26	Healthy and pro-inflammatory gut ecology plays a crucial role in the digestion and tolerance of a novel Gluten Friendlyâ,,¢ bread in celiac subjects: a randomized, double blind, placebo control <i>in vivo</i> study. Food and Function, 2022, 13, 1299-1315.	2.1	7
27	Changes of the cell surface hydrophobicity of <i>Lactobacillus acidophilus</i> Laâ€5 in response to pH, temperature and inulin. International Journal of Food Science and Technology, 2018, 53, 1262-1268.	1.3	4
28	Preliminary Characterization of Yeasts from Bombino Bianco, a Grape Variety of Apulian Region, and Selection of an Isolate as a Potential Starter. Fermentation, 2019, 5, 102.	1.4	4
29	Qualitative survey of fungi isolated from wineâ€aging environment. International Journal of Food Science and Technology, 2012, 47, 1138-1143.	1.3	2
30	Artificial aging of Uva di Troia and Primitivo wines using oak chips inoculated with <i>Penicillium purpurogenum </i> Journal of the Science of Food and Agriculture, 2012, 92, 343-350.	1.7	1
31	Viability and Acidification by Promising Yeasts Intended as Potential Starter Cultures for Rice-based Beverages. Advance Journal of Food Science and Technology, 2015, 9, 326-331.	0.1	1
32	Wine Microbiology and Predictive Microbiology: A Short Overview on Application, and Perspectives. Microorganisms, 2022, 10, 421.	1.6	1
33	Editorial: Wine Microbiology: Current Trends and Approaches. Frontiers in Microbiology, 2022, 13, 873980.	1.5	0