Karine Crozat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9460751/publications.pdf

Version: 2024-02-01

		116194	198040
52	8,100	36	52
papers	citations	h-index	g-index
57	57	57	11731
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Type 1 conventional dendritic cells and interferons are required for spontaneous CD4 ⁺ and CD8 ⁺ Tâ€eell protective responses to breast cancer. Clinical and Translational Immunology, 2021, 10, e1305.	1.7	35
2	NF-κB–dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Science Immunology, 2021, 6, .	5.6	55
3	Natural killer cells and dendritic epidermal γδTÂcells orchestrate type 1 conventional DC spatiotemporal repositioning toward CD8+ TÂcells. IScience, 2021, 24, 103059.	1.9	21
4	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	7.0	55
5	Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?. Frontiers in Immunology, 2019, 10, 9.	2.2	126
6	Novel Cre-Expressing Mouse Strains Permitting to Selectively Track and Edit Type 1 Conventional Dendritic Cells Facilitate Disentangling Their Complexity in vivo. Frontiers in Immunology, 2018, 9, 2805.	2.2	27
7	Profiling <scp>MHC II</scp> immunopeptidome of bloodâ€stage malaria reveals that <scp>cDC</scp> 1 control the functionality of parasiteâ€specific <scp>CD</scp> 4 T cells. EMBO Molecular Medicine, 2017, 9, 1605-1621.	3.3	33
8	An ENU-induced splice site mutation of mouse Collal causing recessive osteogenesis imperfecta and revealing a novel splicing rescue. Scientific Reports, 2017, 7, 11717.	1.6	7
9	Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery. Immunity, 2016, 45, 305-318.	6.6	151
10	XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with <i>Listeria monocytogenes</i> or certain viruses. Journal of Experimental Medicine, 2016, 213, 75-92.	4.2	102
11	Natural Killer Cell Sensing of Infected Cells Compensates for MyD88 Deficiency but Not IFN-I Activity in Resistance to Mouse Cytomegalovirus. PLoS Pathogens, 2015, 11, e1004897.	2.1	16
12	Plasmacytoid, conventional, and monocyteâ€derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. European Journal of Immunology, 2013, 43, 1706-1715.	1.6	87
13	Hypopigmentation and Maternal-Zygotic Embryonic Lethality Caused by a Hypomorphic Mbtps1 Mutation in Mice. G3: Genes, Genomes, Genetics, 2012, 2, 499-504.	0.8	8
14	Differential Responses of Immune Cells to Type I Interferon Contribute to Host Resistance to Viral Infection. Cell Host and Microbe, 2012, 12, 571-584.	5.1	89
15	ENU-induced phenovariance in mice: inferences from 587 mutations. BMC Research Notes, 2012, 5, 577.	0.6	46
16	Inflammatory Monocytes and Neutrophils Are Licensed to Kill during Memory Responses In Vivo. PLoS Pathogens, 2011, 7, e1002457.	2.1	56
17	Impact of \hat{I}^22 integrin deficiency on mouse natural killer cell development and function. Blood, 2011, 117, 2874-2882.	0.6	24
18	Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice. Blood, 2011, 117, 6582-6588.	0.6	60

#	Article	IF	CITATIONS
19	Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD8α+ Type. Journal of Immunology, 2011, 187, 4411-4415.	0.4	202
20	Skin-draining lymph nodes contain dermis-derived CD103â^' dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood, 2010, 115, 1958-1968.	0.6	286
21	An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence. Nature Immunology, 2010, 11, 335-343.	7.0	78
22	Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunological Reviews, 2010, 234, 177-198.	2.8	177
23	The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8 \hat{l} ±+ dendritic cells. Journal of Experimental Medicine, 2010, 207, 1283-1292.	4.2	558
24	Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9759-9764.	3.3	38
25	Existence of CD8α-Like Dendritic Cells with a Conserved Functional Specialization and a Common Molecular Signature in Distant Mammalian Species. Journal of Immunology, 2010, 185, 3313-3325.	0.4	107
26	Mice with mutations of <i>Dock7</i> have generalized hypopigmentation and white-spotting but show normal neurological function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2706-2711.	3.3	37
27	Identification of Mouse Cytomegalovirus Resistance Loci by ENU Mutagenesis. Viruses, 2009, 1, 460-483.	1.5	2
28	Crosstalk between components of the innate immune system: promoting antiâ€microbial defenses and avoiding immunopathologies. Immunological Reviews, 2009, 227, 129-149.	2.8	64
29	Commitment to the Regulatory T Cell Lineage Requires CARMA1 in the Thymus but Not in the Periphery. PLoS Biology, 2009, 7, e1000051.	2.6	92
30	The Rab27a Effectors JFC1/Slp1 and Munc13â€4 Regulate Exocytosis of Neutrophil Granules. Traffic, 2008, 9, 2151-2164.	1.3	79
31	TLR4/CD14-mediated PI3K activation is an essential component of interferon-dependent VSV resistance in macrophages. Molecular Immunology, 2008, 45, 2790-2796.	1.0	46
32	Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. Journal of Experimental Medicine, 2008, 205, 737-737.	4.2	1
33	Natural killer cells in immunodefense against infective agents. Expert Review of Anti-Infective Therapy, 2008, 6, 867-885.	2.0	28
34	Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. Journal of Experimental Medicine, 2007, 204, 853-863.	4.2	143
35	ATP-sensitive potassium channels mediate survival during infection in mammals and insects. Nature Genetics, 2007, 39, 1453-1460.	9.4	61
36	Genetic analysis of resistance to viral infection. Nature Reviews Immunology, 2007, 7, 753-766.	10.6	172

3

#	Article	IF	CITATIONS
37	GENETIC ANALYSIS OF HOST RESISTANCE: Toll-Like Receptor Signaling and Immunity at Large. Annual Review of Immunology, 2006, 24, 353-389.		713
38	The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nature Immunology, 2006, 7, 156-164.	7.0	714
39	Analysis of the MCMV resistome by ENU mutagenesis. Mammalian Genome, 2006, 17, 398-406.	1.0	51
40	Genetic Analysis of Innate Immunity. Advances in Immunology, 2006, 91, 175-226.	1.1	31
41	Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10961-10966.	3.3	122
42	Genetic dissection of innate immunity to infection: the mouse cytomegalovirus model. Current Opinion in Immunology, 2005, 17, 36-43.	2.4	49
43	CD36 is a sensor of diacylglycerides. Nature, 2005, 433, 523-527.	13.7	779
44	An essential role for $Rxr\hat{l}_{\pm}$ in the development of Th2 responses. European Journal of Immunology, 2005, 35, 3414-3423.	1.6	54
45	A Toll-Like Receptor 2-Responsive Lipid Effector Pathway Protects Mammals against Skin Infections with Gram-Positive Bacteria. Infection and Immunity, 2005, 73, 4512-4521.	1.0	205
46	Genetic analysis of innate resistance to mouse cytomegalovirus (MCMV). Briefings in Functional Genomics & Proteomics, 2005, 4, 203-213.	3.8	14
47	Velvet, a Dominant Egfr Mutation That Causes Wavy Hair and Defective Eyelid Development in Mice. Genetics, 2004, 166, 331-340.	1.2	63
48	TLR7: A new sensor of viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6835-6836.	3.3	151
49	Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3516-3521.	3.3	837
50	Pinkie, the First Viable Germline Hypomorph Allele of Retinoid X Receptor Alpha, Reveals an Important Role for RXRa in Th2 Development Blood, 2004, 104, 313-313.	0.6	2
51	3D, a Novel Mutation That Confers Defective Sensing by Toll-Like Receptors 3, 7 and 9 Blood, 2004, 104, 3441-3441.	0.6	0
52	Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature, 2003, 424, 743-748.	13.7	1,138