
Nicholas K Hayward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9460143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic Classification of Cutaneous Melanoma. Cell, 2015, 161, 1681-1696.	13.5	2,562
2	High frequency of BRAF mutations in nevi. Nature Genetics, 2003, 33, 19-20.	9.4	1,547
3	Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature Genetics, 2011, 43, 246-252.	9.4	1,201
4	Whole-genome landscapes of major melanoma subtypes. Nature, 2017, 545, 175-180.	13.7	1,068
5	Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genetics, 2012, 44, 1006-1014.	9.4	1,052
6	A Versatile Gene-Based Test for Genome-wide Association Studies. American Journal of Human Genetics, 2010, 87, 139-145.	2.6	809
7	Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Genetics, 1996, 12, 97-99.	9.4	756
8	Menin Associates with a Trithorax Family Histone Methyltransferase Complex and with the Hoxc8 Locus. Molecular Cell, 2004, 13, 587-597.	4.5	568
9	Melanocortin-1 Receptor Polymorphisms and Risk of Melanoma: Is the Association Explained Solely by Pigmentation Phenotype?. American Journal of Human Genetics, 2000, 66, 176-186.	2.6	472
10	A Genome-Wide Association Study Identifies Novel Alleles Associated with Hair Color and Skin Pigmentation. PLoS Genetics, 2008, 4, e1000074.	1.5	439
11	Geographical Variation in the Penetrance of CDKN2A Mutations for Melanoma. Journal of the National Cancer Institute, 2002, 94, 894-903.	3.0	435
12	Genome-wide association study identifies three loci associated with melanoma risk. Nature Genetics, 2009, 41, 920-925.	9.4	422
13	A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature, 2011, 480, 99-103.	13.7	413
14	Melanocytic Nevi, Solar Keratoses, and Divergent Pathways to Cutaneous Melanoma. Journal of the National Cancer Institute, 2003, 95, 806-812.	3.0	388
15	High-risk Melanoma Susceptibility Genes and Pancreatic Cancer, Neural System Tumors, and Uveal Melanoma across GenoMEL. Cancer Research, 2006, 66, 9818-9828.	0.4	373
16	Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. Journal of Medical Genetics, 2006, 44, 99-106.	1.5	350
17	A Single SNP in an Evolutionary Conserved Region within Intron 86 of the HERC2 Gene Determines Human Blue-Brown Eye Color. American Journal of Human Genetics, 2008, 82, 424-431.	2.6	334
18	POT1 loss-of-function variants predispose to familial melanoma. Nature Genetics, 2014, 46, 478-481.	9.4	319

#	Article	IF	CITATIONS
19	Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nature Communications, 2014, 5, 5694.	5.8	295
20	MC1R Genotype Modifies Risk of Melanoma in Families Segregating CDKN2A Mutations. American Journal of Human Genetics, 2001, 69, 765-773.	2.6	292
21	Genetics of melanoma predisposition. Oncogene, 2003, 22, 3053-3062.	2.6	283
22	ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. Journal of Clinical Investigation, 2016, 126, 3219-3235.	3.9	256
23	Mice Lacking the Vascular Endothelial Growth Factor-B Gene (<i>Vegfb</i>) Have Smaller Hearts, Dysfunctional Coronary Vasculature, and Impaired Recovery From Cardiac Ischemia. Circulation Research, 2000, 86, E29-35.	2.0	250
24	Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nature Communications, 2014, 5, 5224.	5.8	236
25	Deep sequencing of uveal melanoma identifies a recurrent mutation in <i>PLCB4</i> . Oncotarget, 2016, 7, 4624-4631.	0.8	235
26	Genome-wide association study identifies three new melanoma susceptibility loci. Nature Genetics, 2011, 43, 1108-1113.	9.4	230
27	The CDKN2A (p16) Gene and Human Cancer. Molecular Medicine, 1997, 3, 5-20.	1.9	228
28	A Major Quantitative-Trait Locus for Mole Density Is Linked to the Familial Melanoma Gene CDKN2A: A Maximum-Likelihood Combined Linkage and Association Analysis in Twins and Their Sibs. American Journal of Human Genetics, 1999, 65, 483-492.	2.6	228
29	Interactive effects of MC1R and OCA2 on melanoma risk phenotypes. Human Molecular Genetics, 2003, 13, 447-461.	1.4	228
30	Transcriptional Pathway Signatures Predict MEK Addiction and Response to Selumetinib (AZD6244). Cancer Research, 2010, 70, 2264-2273.	0.4	222
31	Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nature Genetics, 2015, 47, 987-995.	9.4	218
32	Genome-Wide Loss of Heterozygosity and Copy Number Analysis in Melanoma Using High-Density Single-Nucleotide Polymorphism Arrays. Cancer Research, 2007, 67, 2632-2642.	0.4	212
33	Common sequence variants on 20q11.22 confer melanoma susceptibility. Nature Genetics, 2008, 40, 838-840.	9.4	209
34	A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12. , 1996, 67, 40-45.		205
35	Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nature Communications, 2019, 10, 3163.	5.8	205
36	Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nature Genetics, 2009, 41, 915-919.	9.4	204

#	Article	IF	CITATIONS
37	A Three–Single-Nucleotide Polymorphism Haplotype in Intron 1 of OCA2 Explains Most Human Eye-Color Variation. American Journal of Human Genetics, 2007, 80, 241-252.	2.6	199
38	Genome-wide association study identifies novel loci predisposing to cutaneous melanomaâ€. Human Molecular Genetics, 2011, 20, 5012-5023.	1.4	187
39	Characterization of the Melanoma miRNAome by Deep Sequencing. PLoS ONE, 2010, 5, e9685.	1.1	181
40	Multiple Pigmentation Gene Polymorphisms Account for a Substantial Proportion of Risk of Cutaneous Malignant Melanoma. Journal of Investigative Dermatology, 2010, 130, 520-528.	0.3	174
41	A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus. Nature Genetics, 2013, 45, 1487-1493.	9.4	174
42	Melanoma genetics. Journal of Medical Genetics, 2016, 53, 1-14.	1.5	173
43	Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nature Genetics, 2012, 44, 165-169.	9.4	170
44	Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene, 2004, 23, 4060-4067.	2.6	169
45	Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study. , 1996, 67, 580-594.		166
46	Loss of <i><scp>CDKN</scp>2A</i> expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the <scp>CDK</scp> 4/6 inhibitor <scp>PD</scp> 0332991 in melanoma cell lines. Pigment Cell and Melanoma Research, 2014, 27, 590-600.	1.5	165
47	Comprehensive Study of the Clinical Phenotype of Germline <i>BAP1</i> Variant-Carrying Families Worldwide. Journal of the National Cancer Institute, 2018, 110, 1328-1341.	3.0	164
48	Nuclear PTEN expression and clinicopathologic features in a population-based series of primary cutaneous melanoma. International Journal of Cancer, 2002, 99, 63-67.	2.3	162
49	Melanoma cell invasiveness is regulated by miRâ€211 suppression of the BRN2 transcription factor. Pigment Cell and Melanoma Research, 2011, 24, 525-537.	1.5	158
50	Compilation of somatic mutations of theCDKN2 gene in human cancers: Non-random distribution of base substitutions. , 1996, 15, 77-88.		155
51	Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13481-13486.	3.3	147
52	Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Human Molecular Genetics, 1995, 4, 1845-1852.	1.4	146
53	The genomic landscape of cutaneous melanoma. Pigment Cell and Melanoma Research, 2016, 29, 266-283.	1.5	144
54	Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nature Genetics, 2011, 43, 1114-1118.	9.4	140

#	Article	IF	CITATIONS
55	Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 2020, 52, 494-504.	9.4	138
56	Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma. Journal of the National Cancer Institute, 2015, 107, .	3.0	134
57	Characterization of the mouse Men1 gene and its expression during development. Oncogene, 1998, 17, 2485-2493.	2.6	133
58	Conditional Inactivation of the Men1 Gene Leads to Pancreatic and Pituitary Tumorigenesis but Does Not Affect Normal Development of These Tissues. Molecular and Cellular Biology, 2004, 24, 3125-3131.	1.1	129
59	MC1R Is a Potent Regulator of PTEN after UV Exposure in Melanocytes. Molecular Cell, 2013, 51, 409-422.	4.5	122
60	Novel Variants in Growth Differentiation Factor 9 in Mothers of Dizygotic Twins. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 4713-4716.	1.8	121
61	Genetics of familial melanoma: 20Âyears after <i><scp>CDKN</scp>2<scp>A</scp></i> . Pigment Cell and Melanoma Research, 2015, 28, 148-160.	1.5	121
62	Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis and Rheumatism, 2003, 48, 2660-2669.	6.7	118
63	Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophrenia Research, 2006, 82, 163-173.	1.1	118
64	Melanocortin 1 receptor and risk of cutaneous melanoma: A metaâ€analysis and estimates of population burden. International Journal of Cancer, 2011, 129, 1730-1740.	2.3	118
65	Analysis of gene amplification in head-and-neck squamous-cell carcinomas. International Journal of Cancer, 1991, 48, 511-515.	2.3	115
66	IRF4 Variants Have Age-Specific Effects on Nevus Count and Predispose to Melanoma. American Journal of Human Genetics, 2010, 87, 6-16.	2.6	114
67	Association of Helicobacter pylori Infection With Reduced Risk for Esophageal Cancer Is Independent of Environmental and Genetic Modifiers. Gastroenterology, 2010, 139, 73-83.	0.6	114
68	Localization of a Novel Melanoma Susceptibility Locus to 1p22. American Journal of Human Genetics, 2003, 73, 301-313.	2.6	113
69	Melanoma prone families with <i>CDK4</i> germline mutation: phenotypic profile and associations with <i>MC1R</i> variants. Journal of Medical Genetics, 2013, 50, 264-270.	1.5	112
70	<i><scp>NF</scp>1</i> â€mutated melanoma tumors harbor distinct clinical and biological characteristics. Molecular Oncology, 2017, 11, 438-451.	2.1	112
71	A variant in FTO shows association with melanoma risk not due to BMI. Nature Genetics, 2013, 45, 428-432.	9.4	111
72	A cryptic <scp><i>BAP1</i></scp> splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell and Melanoma Research, 2012, 25, 815-818.	1.5	109

#	Article	IF	CITATIONS
73	The Effect on Melanoma Risk of Genes Previously Associated With Telomere Length. Journal of the National Cancer Institute, 2014, 106, .	3.0	109
74	Gene Expression Signature Predicts Recurrence in Lung Adenocarcinoma. Clinical Cancer Research, 2007, 13, 2946-2954.	3.2	107
75	Genetic testing for melanoma. Lancet Oncology, The, 2002, 3, 653-654.	5.1	106
76	Predictors of Sun Protection Behaviors and Severe Sunburn in an International Online Study. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2199-2210.	1.1	106
77	Melanoma in adolescents: A case-control study of risk factors in Queensland, Australia. International Journal of Cancer, 2002, 98, 92-98.	2.3	105
78	Cutaneous melanoma susceptibility and progression genes. Cancer Letters, 2005, 230, 153-186.	3.2	102
79	Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. Nature Communications, 2020, 11, 5259.	5.8	102
80	MicroRNA-218 Is Deleted and Downregulated in Lung Squamous Cell Carcinoma. PLoS ONE, 2010, 5, e12560.	1.1	100
81	A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, andCDK4 mutation. Genes Chromosomes and Cancer, 2005, 44, 10-18.	1.5	94
82	A Genome Scan for Eye Color in 502 Twin Families: Most Variation is due to a QTL on Chromosome 15q. Twin Research and Human Genetics, 2004, 7, 197-210.	1.5	91
83	Recurrent inactivating RASA2 mutations in melanoma. Nature Genetics, 2015, 47, 1408-1410.	9.4	90
84	A genetic model of melanoma tumorigenesis based on allelic losses. Genes Chromosomes and Cancer, 1995, 12, 134-141.	1.5	88
85	Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways. Nature Communications, 2018, 9, 4774.	5.8	87
86	The Prognostic and Predictive Value of Melanoma-related MicroRNAs Using Tissue and Serum: A MicroRNA Expression Analysis. EBioMedicine, 2015, 2, 671-680.	2.7	86
87	Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nature Communications, 2020, 11, 2408.	5.8	86
88	Most common â€~sporadic' cancers have a significant germline genetic component. Human Molecular Genetics, 2014, 23, 6112-6118.	1.4	85
89	Broad tumor spectrum in a mouse model of multiple endocrine neoplasia type 1. International Journal of Cancer, 2007, 120, 259-267.	2.3	83
90	Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget, 2015, 6, 27023-27036.	0.8	83

#	Article	IF	CITATIONS
91	A recurrent germline <i><scp>BAP1</scp></i> mutation and extension of the <i><scp>BAP1</scp></i> tumor predisposition spectrum to include basal cell carcinoma. Clinical Genetics, 2015, 88, 267-272.	1.0	81
92	miR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget, 2015, 6, 17753-17763.	0.8	81
93	High-Risk Human Papillomavirus in Esophageal Squamous Cell Carcinoma. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2080-2087.	1.1	80
94	ATG16L1 T300A Shows Strong Associations With Disease Subgroups in a Large Australian IBD Population: Further Support for Significant Disease Heterogeneity. American Journal of Gastroenterology, 2008, 103, 2519-2526.	0.2	79
95	Genome-Wide Copy Number Analysis in Esophageal Adenocarcinoma Using High-Density Single-Nucleotide Polymorphism Arrays. Cancer Research, 2008, 68, 4163-4172.	0.4	79
96	Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene, 1997, 15, 2999-3005.	2.6	78
97	Molecular Pathways: Mitogen-Activated Protein Kinase Pathway Mutations and Drug Resistance. Clinical Cancer Research, 2013, 19, 2301-2309.	3.2	77
98	Confirmation of a BRAF mutation-associated gene expression signature in melanoma. Pigment Cell & Melanoma Research, 2007, 20, 216-221.	4.0	76
99	The Association between MC1R Genotype and BRAF Mutation Status in Cutaneous Melanoma: Findings from an Australian Population. Journal of Investigative Dermatology, 2010, 130, 241-248.	0.3	76
100	MicroRNA-34c is associated with emphysema severity and modulates SERPINE1 expression. BMC Genomics, 2014, 15, 88.	1.2	76
101	A genome-wide scan for naevus count: linkage to CDKN2A and to other chromosome regions. European Journal of Human Genetics, 2007, 15, 94-102.	1.4	73
102	Cross-Platform Array Screening Identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as Genes Frequently Silenced by Methylation in Melanoma. PLoS ONE, 2011, 6, e26121.	1.1	73
103	Melanoma Genetics: Recent Findings Take Us Beyond Well-Traveled Pathways. Journal of Investigative Dermatology, 2012, 132, 1763-1774.	0.3	72
104	Second stage of a genome scan of schizophrenia: Study of five positive regions in an expanded sample. American Journal of Medical Genetics Part A, 2000, 96, 864-869.	2.4	71
105	Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma. Genes Chromosomes and Cancer, 2009, 48, 10-21.	1.5	71
106	InterSCOPE Study: Associations Between Esophageal Squamous Cell Carcinoma and Human Papillomavirus Serological Markers. Journal of the National Cancer Institute, 2012, 104, 147-158.	3.0	71
107	SOX10 Ablation Arrests Cell Cycle, Induces Senescence, and Suppresses Melanomagenesis. Cancer Research, 2013, 73, 5709-5718.	0.4	70
108	Schizophrenia susceptibility and chromosome 6p24–22. Nature Genetics, 1995, 11, 233-234.	9.4	69

#	Article	IF	CITATIONS
109	Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype. Oncotarget, 2013, 4, 2212-2224.	0.8	69
110	Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nature Communications, 2014, 5, 3901.	5.8	68
111	MicroRNA regulation of melanoma progression. Melanoma Research, 2012, 22, 101-113.	0.6	67
112	BRAF mutation status is an independent prognostic factor for resected stage IIIB and IIIC melanoma: Implications for melanoma staging and adjuvant therapy. European Journal of Cancer, 2014, 50, 2668-2676.	1.3	67
113	Pathways to Melanoma Development: Lessons from the Mouse. Journal of Investigative Dermatology, 2002, 119, 783-792.	0.3	66
114	Polymorphisms in MGMT and DNA repair genes and the risk of esophageal adenocarcinoma. International Journal of Cancer, 2008, 123, 174-180.	2.3	65
115	Loss of alleles on the short arm of chromosome 11 in a hepatoblastoma from a child with Beckwith-Wiedemann syndrome. Human Genetics, 1988, 79, 186-189.	1.8	64
116	Multiomic profiling of checkpoint inhibitor-treated melanoma: Identifying predictors of response and resistance, and markers of biological discordance. Cancer Cell, 2022, 40, 88-102.e7.	7.7	64
117	The protective role of DOT1L in UV-induced melanomagenesis. Nature Communications, 2018, 9, 259.	5.8	63
118	Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Reports, 2019, 29, 573-588.e7.	2.9	62
119	A Genome Scan for Eye Color in 502 Twin Families: Most Variation is due to a QTL on Chromosome 15q. , 0, .		62
120	Haplotype analysis of two recurrentCDKN2A mutations in 10 melanoma families: Evidence for common founders and independent mutations. , 1998, 11, 424-431.		61
121	A linkage study of schizophrenia to markers within Xp11 near the MAOB gene. Psychiatry Research, 1997, 70, 131-143.	1.7	60
122	A highly recurrent RPS27 5'UTR mutation in melanoma. Oncotarget, 2014, 5, 2912-2917.	0.8	60
123	PI3-Kinase Subunits Are Infrequent Somatic Targets in Melanoma. Journal of Investigative Dermatology, 2006, 126, 1660-1663.	0.3	59
124	KCNN4 Gene Variant Is Associated With Ileal Crohn's Disease in the Australian and New Zealand Population. American Journal of Gastroenterology, 2010, 105, 2209-2217.	0.2	59
125	MicroRNA and mRNA expression profiling in metastatic melanoma reveal associations with <i>BRAF</i> mutation and patient prognosis. Pigment Cell and Melanoma Research, 2015, 28, 254-266.	1.5	59
126	High Intake of Folate from Food Sources Is Associated with Reduced Risk of Esophageal Cancer in an Australian Population ,. Journal of Nutrition, 2011, 141, 274-283.	1.3	56

#	Article	IF	CITATIONS
127	Somatic inactivating PTPRJ mutations and dysregulated pathways identified in canine malignant melanoma by integrated comparative genomic analysis. PLoS Genetics, 2018, 14, e1007589.	1.5	56
128	Osteopontin is a downstream effector of the PI3-kinase pathway in melanomas that is inversely correlated with functional PTEN. Carcinogenesis, 2006, 27, 1778-1786.	1.3	55
129	Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Reports, 2015, 11, 1458-1473.	2.9	55
130	Molecular Genomic Profiling of MelanocyticÂNevi. Journal of Investigative Dermatology, 2019, 139, 1762-1768.	0.3	55
131	Whole genome sequencing of melanomas in adolescent and young adults reveals distinct mutation landscapes and the potential role of germline variants in disease susceptibility. International Journal of Cancer, 2019, 144, 1049-1060.	2.3	54
132	The phospholipase C β3 gene located in the MEN1 region shows loss of expression in endocrine tumours. Human Molecular Genetics, 1994, 3, 1775-1781.	1.4	53
133	Spontaneous and UV Radiation–Induced Multiple Metastatic Melanomas in Cdk4R24C/R24C/TPras Mice. Cancer Research, 2006, 66, 2946-2952.	0.4	52
134	Similarity of aberrant DNA methylation in Barrett's esophagus and esophageal adenocarcinoma. Molecular Cancer, 2008, 7, 75.	7.9	52
135	H adherin expression reduces invasion of malignant melanoma. Pigment Cell and Melanoma Research, 2009, 22, 296-306.	1.5	52
136	Prevalence of germline <i><scp>BAP</scp>1</i> mutation in a populationâ€based sample of uveal melanoma cases. Pigment Cell and Melanoma Research, 2013, 26, 278-279.	1.5	52
137	Exclusion of the familial melanoma locus (MLM) from the PNDD1S47 and MYCL1 regions of chromosome arm 1p in 7 Australian pedigrees. Genomics, 1992, 12, 18-25.	1.3	51
138	Nevi, Family History, and Fair Skin Increase the Risk of Second Primary Melanoma. Journal of Investigative Dermatology, 2011, 131, 461-467.	0.3	51
139	<i>Helicobacter pylori</i> infection and the risks of Barrett's oesophagus: A populationâ€based case–control study. International Journal of Cancer, 2012, 130, 2407-2416.	2.3	51
140	Germline TERT promoter mutations are rare in familial melanoma. Familial Cancer, 2016, 15, 139-144.	0.9	51
141	A common intronic variant of PARP1 confers melanoma risk and mediates melanocyte growth via regulation of MITF. Nature Genetics, 2017, 49, 1326-1335.	9.4	51
142	Prolonged stable disease in a uveal melanoma patient with germline MBD4 nonsense mutation treated with pembrolizumab and ipilimumab. Immunogenetics, 2019, 71, 433-436.	1.2	51
143	A BAP1 Mutation in a Danish Family Predisposes to Uveal Melanoma and Other Cancers. PLoS ONE, 2013, 8, e72144.	1.1	51
144	Hepatocellular carcinoma mutation. Nature, 1991, 352, 764-764.	13.7	50

#	Article	IF	CITATIONS
145	Exome Sequencing to Predict Neoantigens in Melanoma. Cancer Immunology Research, 2015, 3, 992-998.	1.6	50
146	Allelic losses on chromosome band 11q13 in aldosterone-producing adrenal tumors. Genes Chromosomes and Cancer, 1995, 12, 73-75.	1.5	49
147	New developments in melanoma genetics. Current Oncology Reports, 2000, 2, 300-306.	1.8	49
148	Expression and localization of mutant p16 proteins in melanocytic lesions from familial melanoma patients. Human Pathology, 2004, 35, 25-33.	1.1	49
149	<i><scp>BRAF</scp></i> / <i><scp>NRAS</scp></i> wildâ€ŧype melanoma, <scp>NF</scp> 1 status and sensitivity to trametinib. Pigment Cell and Melanoma Research, 2015, 28, 117-119.	1.5	49
150	Transgenic Overexpression of Vascular Endothelial Growth Factor-B Isoforms by Endothelial Cells Potentiates Postnatal Vessel Growth In Vivo and In Vitro. Circulation Research, 2005, 97, e60-70.	2.0	48
151	Melanomas of unknown primary have a mutation profile consistent with cutaneous sunâ€exposed melanoma. Pigment Cell and Melanoma Research, 2013, 26, 852-860.	1.5	48
152	Functional reassessment of P16 variants using a transfection-based assay. , 1999, 82, 305-312.		47
153	Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension. Cardiovascular Research, 2002, 55, 361-368.	1.8	47
154	Melanoma risk factors, perceived threat and intentional tanning: an international online survey. European Journal of Cancer Prevention, 2010, 19, 216-226.	0.6	47
155	Reviewing the somatic genetics of melanoma: from current to future analytical approaches. Pigment Cell and Melanoma Research, 2012, 25, 144-154.	1.5	46
156	Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma. Carcinogenesis, 2016, 37, 356-365.	1.3	46
157	EZH2 Cooperates with DNA Methylation to Downregulate Key Tumor Suppressors and IFN Gene Signatures in Melanoma. Journal of Investigative Dermatology, 2020, 140, 2442-2454.e5.	0.3	46
158	Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling. Nature Communications, 2021, 12, 1434.	5.8	46
159	Localization of Multiple Melanoma Tumor–Suppressor Genes on Chromosome 11 by Use of Homozygosity Mapping-of-Deletions Analysis. American Journal of Human Genetics, 2000, 67, 417-431.	2.6	45
160	Fibroblast and Lymphoblast Gene Expression Profiles in Schizophrenia: Are Non-Neural Cells Informative?. PLoS ONE, 2008, 3, e2412.	1.1	45
161	Murine Neonatal Melanocytes Exhibit a Heightened Proliferative Response to Ultraviolet Radiation and Migrate to the Epidermal Basal Layer. Journal of Investigative Dermatology, 2009, 129, 184-193.	0.3	45
162	A High-Throughput Panel for Identifying Clinically Relevant Mutation Profiles in Melanoma. Molecular Cancer Therapeutics, 2012, 11, 888-897.	1.9	45

#	Article	IF	CITATIONS
163	Simple tandem repeat allelic deletions confirm the preferential loss of distal chromosome 6q in melanoma. International Journal of Cancer, 1994, 58, 203-206.	2.3	44
164	Epidermal Growth Factor Gene (EGF) Polymorphism and Risk of Melanocytic Neoplasia. Journal of Investigative Dermatology, 2004, 123, 760-762.	0.3	44
165	Expression of Wnt5a and its downstream effector β-catenin in uveal melanoma. Melanoma Research, 2007, 17, 380-386.	0.6	44
166	Locusâ€ s pecific concordance of genomic alterations between tissue and plasma circulating tumor <scp>DNA</scp> in metastatic melanoma. Molecular Oncology, 2019, 13, 171-184.	2.1	44
167	Sensitive droplet digital PCR method for detection of <i>TERT</i> promoter mutations in cell free DNA from patients with metastatic melanoma. Oncotarget, 2017, 8, 78890-78900.	0.8	44
168	Anatomic position determines oncogenic specificity in melanoma. Nature, 2022, 604, 354-361.	13.7	44
169	Medical and Surgical Care of Patients With Mesothelioma and Their Relatives Carrying Germline BAP1 Mutations. Journal of Thoracic Oncology, 2022, 17, 873-889.	0.5	44
170	CDKN2A mutation in a non-FAMMM kindred with cancers at multiple sites results in a functionally abnormal protein. , 1997, 73, 531-536.		43
171	POLE mutations in families predisposed to cutaneous melanoma. Familial Cancer, 2015, 14, 621-628.	0.9	43
172	No evidence for the H133Y mutation in SONIC HEDGEHOG in a collection of common tumour types. Oncogene, 1998, 16, 1091-1093.	2.6	42
173	The Queensland Study of Melanoma: Environmental and Genetic Associations (Q-MEGA); Study Design, Baseline Characteristics, and Repeatability of Phenotype and Sun Exposure Measures. Twin Research and Human Genetics, 2008, 11, 183-196.	0.3	42
174	Analysis of the Promoter Region of the Human VEGF-Related Factor Gene. Biochemical and Biophysical Research Communications, 1997, 230, 413-418.	1.0	41
175	Single Nucleotide Polymorphisms in Obesity-Related Genes and the Risk of Esophageal Cancers. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 1007-1012.	1.1	41
176	Identification of a melanoma susceptibility locus and somatic mutation in <i>TET2</i> . Carcinogenesis, 2014, 35, 2097-2101.	1.3	41
177	Unexpected UVR and non-UVR mutation burden in some acral and cutaneous melanomas. Laboratory Investigation, 2017, 97, 130-145.	1.7	40
178	Telomere sequence content can be used to determine ALT activity in tumours. Nucleic Acids Research, 2018, 46, 4903-4918.	6.5	40
179	Loss of heterozygosity of chromosome 13 in Merkel cell carcinoma. , 1997, 20, 93-97.		39
180	Polymorphisms in Nevus-Associated Genes <i>MTAP</i> , <i>PLA2G6</i> , and <i>IRF4</i> and the Risk of Invasive Cutaneous Melanoma. Twin Research and Human Genetics, 2011, 14, 422-432.	0.3	39

#	Article	IF	CITATIONS
181	Meta-Analysis Combining New and Existing Data Sets Confirms that the TERT–CLPTM1L Locus Influences Melanoma Risk. Journal of Investigative Dermatology, 2012, 132, 485-487.	0.3	39
182	Comparison of whole-exome sequencing of matched fresh and formalin fixed paraffin embedded melanoma tumours: implications for clinical decision making. Pathology, 2016, 48, 261-266.	0.3	39
183	Somatic Hypermutation of the <i>YAP</i> Oncogene in a Human Cutaneous Melanoma. Molecular Cancer Research, 2019, 17, 1435-1449.	1.5	39
184	Chromosomal gains and losses in ocular melanoma detected by comparative genomic hybridization in an Australian population-based study. Cancer Genetics and Cytogenetics, 2003, 144, 12-17.	1.0	38
185	NRAS and BRAF Mutations in Cutaneous Melanoma and the Association with MC1R Genotype: Findings from Spanish and Austrian Populations. Journal of Investigative Dermatology, 2013, 133, 1027-1033.	0.3	38
186	Genomeâ€wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis. Genes Chromosomes and Cancer, 2014, 53, 324-338.	1.5	38
187	Deletion mapping suggests that the 1p22 melanoma susceptibility gene is a tumor suppressor localized to a 9-mb interval. Genes Chromosomes and Cancer, 2004, 41, 56-64.	1.5	37
188	Coexisting NRAS and BRAF Mutations in Primary Familial Melanomas with Specific CDKN2A Germline Alterations. Journal of Investigative Dermatology, 2010, 130, 618-620.	0.3	37
189	The risk of Barrett's esophagus associated with abdominal obesity in males and females. International Journal of Cancer, 2013, 132, 2192-2199.	2.3	37
190	Generation of homozygosity at the c-Ha-ras-1 locus on chromosome 11p in an adrenal adenoma from an adult with Wiedemann—Beckwith syndrome. Cancer Genetics and Cytogenetics, 1988, 30, 127-132.	1.0	36
191	Skin Examination Behavior. Archives of Dermatology, 2012, 148, 1142.	1.7	36
192	Prognostic value of BRAF mutations in localized cutaneous melanoma. Journal of the American Academy of Dermatology, 2014, 70, 858-862.e2.	0.6	36
193	Whole Genome Expression Array Profiling Highlights Differences in Mucosal Defense Genes in Barrett's Esophagus and Esophageal Adenocarcinoma. PLoS ONE, 2011, 6, e22513.	1.1	36
194	Linkage analysis in familial melanoma kindreds to markers on chromosome 6p. International Journal of Cancer, 1994, 59, 771-775.	2.3	35
195	The current situation with regard to human melanoma and genetic inferences. Current Opinion in Oncology, 1996, 8, 136-142.	1.1	35
196	Expression profiling identifies genes involved in emphysema severity. Respiratory Research, 2009, 10, 81.	1.4	35
197	Prevalence and determinants of frequent gastroesophageal reflux symptoms in the Australian community. Ecological Management and Restoration, 2012, 25, 573-583.	0.2	35
198	SiDCoN: A Tool to Aid Scoring of DNA Copy Number Changes in SNP Chip Data. PLoS ONE, 2007, 2, e1093.	1.1	33

#	Article	IF	CITATIONS
199	A Panel of Circulating MicroRNAs Detects Uveal Melanoma With High Precision. Translational Vision Science and Technology, 2019, 8, 12.	1.1	33
200	Variation in bone morphogenetic protein 15 is not associated with spontaneous human dizygotic twinning. Human Reproduction, 2008, 23, 2372-2379.	0.4	32
201	Exploration of peptides bound to <scp>MHC</scp> class I molecules in melanoma. Pigment Cell and Melanoma Research, 2015, 28, 281-294.	1.5	31
202	Recurrent hotspot SF3B1 mutations at codon 625 in vulvovaginal mucosal melanoma identified in a study of 27 Australian mucosal melanomas. Oncotarget, 2019, 10, 930-941.	0.8	31
203	A Population-Based Study of Australian Twins with Melanoma Suggests a Strong Genetic Contribution to Liability. Journal of Investigative Dermatology, 2009, 129, 2211-2219.	0.3	30
204	Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions. International Journal of Cancer, 2015, 136, 1351-1360.	2.3	30
205	Telomere-Regulating Genes and the Telomere Interactome in Familial Cancers. Molecular Cancer Research, 2015, 13, 211-222.	1.5	29
206	Tumor necrosis factor haplotype analysis amongst schizophrenia probands from four distinct populations in the Asia-Pacific region. American Journal of Medical Genetics Part A, 2003, 121B, 1-6.	2.4	28
207	Neonatal Ultraviolet Radiation Exposure Is Critical for Malignant Melanoma Induction in Pigmented Tpras Transgenic Mice. Journal of Investigative Dermatology, 2005, 125, 1074-1077.	0.3	28
208	Evaluation of Association of HNF1B Variants with Diverse Cancers: Collaborative Analysis of Data from 19 Genome-Wide Association Studies. PLoS ONE, 2010, 5, e10858.	1.1	28
209	Array-Comparative Genomic Hybridization Reveals Loss of SOCS6 Is Associated with Poor Prognosis in Primary Lung Squamous Cell Carcinoma. PLoS ONE, 2012, 7, e30398.	1.1	28
210	Linkage mapping of melanoma (MLM) using 172 microsatellite markers. Genomics, 1992, 14, 939-947.	1.3	27
211	Whole Exome Sequencing Identifies Candidate Genes Associated with Hereditary Predisposition to Uveal Melanoma. Ophthalmology, 2020, 127, 668-678.	2.5	27
212	MS4A1 Dysregulation in Asbestos-Related Lung Squamous Cell Carcinoma Is Due to CD20 Stromal Lymphocyte Expression. PLoS ONE, 2012, 7, e34943.	1.1	27
213	Invasion and metastasis markers in cancers. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2005, 58, 466-474.	1.1	26
214	A comparison of CDKN2A mutation detection within the Melanoma Genetics Consortium (GenoMEL). European Journal of Cancer, 2008, 44, 1269-1274.	1.3	26
215	Genes and Gene Ontologies Common to Airflow Obstruction and Emphysema in the Lungs of Patients with COPD. PLoS ONE, 2011, 6, e17442.	1.1	26
216	Loss of heterozygosity studies in squamous cell carcinomas of the head and neck. , 1996, 18, 248-253.		25

#	Article	IF	CITATIONS
217	Replicated effects of sex and genotype on gene expression in human lymphoblastoid cell lines. Human Molecular Genetics, 2007, 16, 364-373.	1.4	25
218	Identification of <i>TFG</i> (TRKâ€fused gene) as a putative metastatic melanoma tumor suppressor gene. Genes Chromosomes and Cancer, 2012, 51, 452-461.	1.5	25
219	Increased p21-activated kinase-1 expression is associated with invasive potential in uveal melanoma. Melanoma Research, 2006, 16, 285-296.	0.6	24
220	Gene expression analysis in absence epilepsy using a monozygotic twin design. Epilepsia, 2008, 49, 1546-1554.	2.6	24
221	Histologic and epidemiologic correlates of P-MAPK, Brn-2, pRb, p53, and p16 immunostaining in cutaneous melanomas. Melanoma Research, 2008, 18, 336-345.	0.6	24
222	<i>ADAM28</i> : A potential oncogene involved in asbestosâ€related lung adenocarcinomas. Genes Chromosomes and Cancer, 2010, 49, 688-698.	1.5	24
223	The effect of <i><scp>MC</scp>1R</i> variants and sunscreen on the response of human melanocytes in vivo to ultraviolet radiation and implications for melanoma. Pigment Cell and Melanoma Research, 2013, 26, 835-844.	1.5	24
224	p16INK4A and p14ARF tumour suppressors in melanoma: lessons from the mouse. Lancet, The, 2002, 359, 7-8.	6.3	23
225	BRAF Polymorphisms and Risk of Melanocytic Neoplasia. Journal of Investigative Dermatology, 2005, 125, 1252-1258.	0.3	23
226	Identification of <i>ARHGEF17</i> , <i>DENND2D</i> , <i>FGFR3,</i> and <i>RB1</i> mutations in melanoma by inhibition of nonsenseâ€mediated mRNA decay. Genes Chromosomes and Cancer, 2008, 47, 1076-1085.	1.5	22
227	Gene expression alterations in formalin-fixed, paraffin-embedded Barrett esophagus and esophageal adenocarcinoma tissues Cancer Biology and Therapy, 2010, 10, 172-179.	1.5	22
228	G9a Inhibition Enhances Checkpoint Inhibitor Blockade Response in Melanoma. Clinical Cancer Research, 2021, 27, 2624-2635.	3.2	22
229	Association Study of the Dystrobrevin-Binding Gene With Schizophrenia in Australian and Indian Samples. Twin Research and Human Genetics, 2006, 9, 531-539.	0.3	21
230	Survival outcomes in patients with multiple primary melanomas. Journal of the European Academy of Dermatology and Venereology, 2015, 29, 2120-2127.	1.3	21
231	A Transcriptionally Inactive ATF2 Variant Drives Melanomagenesis. Cell Reports, 2016, 15, 1884-1892.	2.9	21
232	Histologic and Phenotypic Factors and MC1R Status Associated with BRAFV600E, BRAFV600K, and NRAS Mutations in a Community-Based Sample of 414 Cutaneous Melanomas. Journal of Investigative Dermatology, 2016, 136, 829-837.	0.3	21
233	Molecular Characterization of Melanoma Cases in Denmark Suspected of Genetic Predisposition. PLoS ONE, 2015, 10, e0122662.	1.1	21
234	The â€~melanoma-enriched' microRNA miR-4731-5p acts as a tumour suppressor. Oncotarget, 2016, 7, 49677-49687.	0.8	21

#	Article	IF	CITATIONS
235	Genomic organization and complete cDNA sequence of the human phosphoinositide-specific phospholipase C β3 gene (PLCB3). Genomics, 1995, 26, 467-472.	1.3	20
236	Evidence for microsatellite instability in bilateral breast carcinomas. Cancer Letters, 2000, 154, 9-17.	3.2	20
237	Mutation analysis of theCDKN2A promoter in Australian melanoma families. Genes Chromosomes and Cancer, 2001, 32, 89-94.	1.5	20
238	Targeting and conditional inactivation of the murineMen1 locus using the Cre recombinase:loxP System. Genesis, 2002, 32, 150-151.	0.8	20
239	Clobal expression profiling of murine MEN1-associated tumors reveals a regulatory role for menin in transcription, cell cycle and chromatin remodelling. International Journal of Cancer, 2007, 121, 776-783.	2.3	20
240	Somatic Mutations in MAP3K5 Attenuate Its Proapoptotic Function in Melanoma through Increased Binding to Thioredoxin. Journal of Investigative Dermatology, 2014, 134, 452-460.	0.3	20
241	Prevalence of Germline <i>BAP1, CDKN2A</i> , and <i>CDK4</i> Mutations in an Australian Population-Based Sample of Cutaneous Melanoma Cases. Twin Research and Human Genetics, 2015, 18, 126-133.	0.3	20
242	Characterization of the Murine VEGF-Related Factor Gene. Biochemical and Biophysical Research Communications, 1996, 220, 922-928.	1.0	19
243	Gene expression profiling in melanoma identifies novel downstream effectors ofp14ARF. International Journal of Cancer, 2007, 121, 784-790.	2.3	19
244	Strong Evidence for a Novel Schizophrenia Risk Locus on Chromosome 1p31.1 in Homogeneous Pedigrees From Tamil Nadu, India. American Journal of Psychiatry, 2009, 166, 206-215.	4.0	19
245	Histologic features of melanoma associated with CDKN2A genotype. Journal of the American Academy of Dermatology, 2015, 72, 496-507.e7.	0.6	19
246	Mutation load in melanoma is affected by <i><scp>MC</scp>1R</i> genotype. Pigment Cell and Melanoma Research, 2017, 30, 255-258.	1.5	19
247	Meta-Analysis and Systematic Review of the Genomics of Mucosal Melanoma. Molecular Cancer Research, 2021, 19, 991-1004.	1.5	19
248	Pathway-Based Analysis of a Melanoma Genome-Wide Association Study: Analysis of Genes Related to Tumour-Immunosuppression. PLoS ONE, 2011, 6, e29451.	1.1	18
249	Somatic BRAF and NRAS Mutations in Familial Melanomas with Known Germline CDKN2A Status: A GenoMEL Study. Journal of Investigative Dermatology, 2014, 134, 287-290.	0.3	18
250	Germline Variation at CDKN2A and Associations with Nevus Phenotypes amongÂMembers of Melanoma Families. Journal of Investigative Dermatology, 2017, 137, 2606-2612.	0.3	18
251	Lack of Genetic and Epigenetic Changes in CDKN2A in Melanocytic Nevi. Journal of Investigative Dermatology, 2001, 117, 383-384.	0.3	17
252	Melanocytes in conditional Rb-/- mice are normal in vivo but exhibit proliferation and pigmentation defects in vitro. Pigment Cell & Melanoma Research, 2005, 18, 252-264.	4.0	17

#	Article	IF	CITATIONS
253	Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT. Journal of the American Academy of Dermatology, 2019, 81, 386-394.	0.6	17
254	Restoration of CDKN2A into Melanoma Cells Induces Morphologic Changes and Reduction in Growth Rate but Not Anchorage-Independent Growth Reversal. Journal of Investigative Dermatology, 1997, 109, 61-68.	0.3	16
255	Prevalence of <scp>BRAF</scp> and <scp>NRAS</scp> mutations in fastâ€growing melanomas. Pigment Cell and Melanoma Research, 2013, 26, 429-431.	1.5	16
256	Coâ€ŧargeting bromodomain and extraâ€ŧerminal proteins and MCL1 induces synergistic cell death in melanoma. International Journal of Cancer, 2020, 147, 2176-2189.	2.3	16
257	Germline mutations in candidate predisposition genes in individuals with cutaneous melanoma and at least two independent additional primary cancers. PLoS ONE, 2018, 13, e0194098.	1.1	16
258	Inhibition of DNA synthesis and alteration to DNA structure by the phenacetin analog p-aminophenol. Biochemical Pharmacology, 1982, 31, 1425-1429.	2.0	15
259	eMelanoBase: An online locus-specific variant database for familial melanoma. Human Mutation, 2003, 21, 2-7.	1.1	15
260	Reduced expression of ILâ€18 is a marker of ultraviolet radiationâ€induced melanomas. International Journal of Cancer, 2008, 123, 227-231.	2.3	15
261	The M53I mutation inCDKN2A is a founder mutation that predominates in melanoma patients with Scottish ancestry. Genes Chromosomes and Cancer, 2007, 46, 277-287.	1.5	14
262	Germline variants in oculocutaneous albinism genes and predisposition to familial cutaneous melanoma. Pigment Cell and Melanoma Research, 2019, 32, 854-863.	1.5	14
263	The Prognostic Significance of Low-Frequency Somatic Mutations in Metastatic Cutaneous Melanoma. Frontiers in Oncology, 2018, 8, 584.	1.3	14
264	A Taql RFLP of the human TGFα gene is significantly associated with cutaneous malignant melanoma. International Journal of Cancer, 1988, 42, 558-561.	2.3	13
265	Rapid Screening of 4000 Individuals for Germ-line Variations in the BRAF Gene. Clinical Chemistry, 2006, 52, 1675-1678.	1.5	13
266	Enhancement of DNA repair using topical T4 endonuclease V does not inhibit melanoma formation in <i>Cdk4</i> ^{<i>R24C/R24C</i>} <i>/Tyr-Nras</i> ^{<i>Q61K</i>} mice following neonatal UVR. Pigment Cell and Melanoma Research, 2010, 23, 121-128.	1.5	13
267	Phenotypic and Histopathological Tumor Characteristics According to CDKN2A Mutation Status among Affected Members of AMelanoma Families. Journal of Investigative Dermatology, 2016, 136, 1066-1069.	0.3	13
268	<scp>UVB</scp> represses melanocyte cell migration and acts through β atenin. Experimental Dermatology, 2017, 26, 875-882.	1.4	13
269	RGS7 is recurrently mutated in melanoma and promotes migration and invasion of human cancer cells. Scientific Reports, 2018, 8, 653.	1.6	13
270	Evaluation of the contribution of germline variants in BRCA1 and BRCA2 to uveal and cutaneous melanoma. Melanoma Research, 2019, 29, 483-490.	0.6	13

#	Article	IF	CITATIONS
271	Tumor Mutation Burden and Structural Chromosomal Aberrations Are Not Associated with T-cell Density or Patient Survival in Acral, Mucosal, and Cutaneous Melanomas. Cancer Immunology Research, 2020, 8, 1346-1353.	1.6	13
272	Germline MC1R Variants and BRAF Mutant Melanoma. Journal of Investigative Dermatology, 2008, 128, 2354-2356.	0.3	12
273	Global expression profiling of sex cord stromal tumors from <i>Men1</i> heterozygous mice identifies altered TGFâ€i² signaling, decreased Gata6 and increased Csf1r expression. International Journal of Cancer, 2009, 124, 1122-1132.	2.3	12
274	Assessment of PALB2 as a Candidate Melanoma Susceptibility Gene. PLoS ONE, 2014, 9, e100683.	1.1	12
275	Germline RAD51B truncating mutation in a family with cutaneous melanoma. Familial Cancer, 2015, 14, 337-340.	0.9	12
276	The Prognostic Impact of Circulating Tumour DNA in Melanoma Patients Treated with Systemic Therapies—Beyond BRAF Mutant Detection. Cancers, 2020, 12, 3793.	1.7	12
277	Detection of somatic mutations in tumours of diverse types by DNA fingerprinting with M13 phage DNA. International Journal of Cancer, 1990, 45, 687-690.	2.3	11
278	Conditions for generating well-resolved human DNA fingerprints using M13 phage DNA. Nucleic Acids Research, 1990, 18, 1065-1065.	6.5	11
279	Dual Loss of Rb1 and Trp53 in the Adrenal Medulla Leads to Spontaneous Pheochromocytoma. Neoplasia, 2010, 12, 235-243.	2.3	11
280	A Flexible Multiplex Bead-Based Assay for Detecting Germline CDKN2A and CDK4 Variants in Melanoma-Prone Kindreds. Journal of Investigative Dermatology, 2011, 131, 480-486.	0.3	11
281	Duplication of CXC chemokine genes on chromosome 4q13 in a melanomaâ€prone family. Pigment Cell and Melanoma Research, 2012, 25, 243-247.	1.5	11
282	Clinical significance of intronic variants in BRAF inhibitor resistant melanomas with altered BRAF transcript splicing. Biomarker Research, 2017, 5, 17.	2.8	11
283	CDKN2A is not the principal target of deletions on the short arm of chromosome 9 in neuroendocrine (Merkel cell) carcinoma of the skin. International Journal of Cancer, 2001, 93, 361-367.	2.3	10
284	Molecular characterization of a t(9;12)(p21;q13) balanced chromosome translocation in combination with integrative genomics analysis identifiesC9orf14as a candidate tumor-suppressor. Genes Chromosomes and Cancer, 2007, 46, 155-162.	1.5	10
285	Whole Genome and Exome Sequencing of Melanoma. Advances in Pharmacology, 2012, 65, 399-435.	1.2	10
286	Menin and p53 have non-synergistic effects on tumorigenesis in mice. BMC Cancer, 2012, 12, 252.	1.1	10
287	Association between functional polymorphisms in genes involved in the MAPK signaling pathways and cutaneous melanoma risk. Carcinogenesis, 2013, 34, 885-892.	1.3	10
288	Tumour procurement, DNA extraction, coverage analysis and optimisation of mutation-detection algorithms for human melanoma genomes. Pathology, 2015, 47, 683-693.	0.3	9

#	Article	IF	CITATIONS
289	<i>SDHD</i> Promoter Mutations Ablate GABP Transcription Factor Binding in Melanoma. Cancer Research, 2017, 77, 1649-1661.	0.4	9
290	Proteomic phenotyping of metastatic melanoma reveals putative signatures of MEK inhibitor response and prognosis. British Journal of Cancer, 2018, 119, 713-723.	2.9	9
291	Multiplex melanoma families are enriched for polygenic risk. Human Molecular Genetics, 2020, 29, 2976-2985.	1.4	9
292	<i>NEK11</i> as a candidate high-penetrance melanoma susceptibility gene. Journal of Medical Genetics, 2020, 57, 203-210.	1.5	9
293	Evaluation of Crizotinib Treatment in a Patient With Unresectable <i>GOPC-ROS1</i> Fusion Agminated Spitz Nevi. JAMA Dermatology, 2021, 157, 836-841.	2.0	9
294	Association study of the dystrobrevin-binding gene with schizophrenia in Australian and Indian samples. Twin Research and Human Genetics, 2006, 9, 531-9.	0.3	9
295	Exclusion of the phosphoinositide-specific phospholipase C?3 (PLCB3) gene as a candidate for multiple endocrine neoplasia type 1. Human Genetics, 1996, 99, 130-132.	1.8	8
296	Polymorphisms in the syntaxin 17 gene are not associated with human cutaneous malignant melanoma. Melanoma Research, 2009, 19, 80-86.	0.6	8
297	Primary Melanoma Tumors from CDKN2A Mutation Carriers Do Not Belong to a Distinct Molecular Subclass. Journal of Investigative Dermatology, 2014, 134, 3000-3003.	0.3	8
298	Combined Inhibition of G9a and EZH2 Suppresses Tumor Growth via Synergistic Induction of IL24-Mediated Apoptosis. Cancer Research, 2022, 82, 1208-1221.	0.4	8
299	The Human Cell Cycle Gene CDC25B Is Located at 20p13. Genomics, 1993, 15, 693-694.	1.3	7
300	The MLLT3 Gene Maps between D9S156 and D9S171 and Contains an Unstable Polymorphic Trinucleotide Repeat. Genomics, 1994, 20, 490-491.	1.3	7
301	Alterations in Gene Expression in MEN1-Associated Insulinoma Development. Pancreas, 2010, 39, 1140-1146.	0.5	7
302	<i>PARP1</i> polymorphisms play opposing roles in melanoma occurrence and survival. International Journal of Cancer, 2015, 136, 2488-2489.	2.3	7
303	Molecular markers to complement sentinel node status in predicting survival in patients with high-risk locally invasive melanoma. International Journal of Cancer, 2016, 139, 664-672.	2.3	7
304	Microsimulation Model for Evaluating the Cost-Effectiveness of Surveillance in <i>BAP1</i> Pathogenic Variant Carriers. JCO Clinical Cancer Informatics, 2021, 5, 143-154.	1.0	7
305	Spontaneous and 4-nitroquinoline 1-oxide-induced G2 chromosome aberrations in lymphoblasts from familial melanoma patients. Cancer Genetics and Cytogenetics, 1989, 39, 233-243.	1.0	6
306	No support for linkage to the bipolar regions on chromosomes 4p, 18p, or 18q in 43 schizophrenia		6

pedigrees. , 2000, 96, 224-227.

#	Article	IF	CITATIONS
307	Lack of TTC4 Mutations in Melanoma. Journal of Investigative Dermatology, 2002, 119, 186-187.	0.3	6
308	Pocket protein function in melanocyte homeostasis and neoplasia. Pigment Cell & Melanoma Research, 2006, 19, 260-283.	4.0	6
309	FRAMe: Familial Risk Assessment of Melanoma—a risk prediction tool to guide CDKN2A germline mutation testing in Australian familial melanoma. Familial Cancer, 2021, 20, 231-239.	0.9	6
310	Systematic review and metaâ€analysis of genomic alterations in acral melanoma. Pigment Cell and Melanoma Research, 2022, 35, 369-386.	1.5	6
311	Association between putative functional variants in the <i><scp>PSMB</scp>9</i> gene and risk of melanoma – reâ€analysis of published melanoma genomeâ€wide association studies. Pigment Cell and Melanoma Research, 2013, 26, 392-401.	1.5	5
312	Effect of N-hydroxyparacetamol on cell cycle progression. Biochemical Pharmacology, 1986, 35, 3511-3516.	2.0	4
313	Characterisation of a New Human and Murine Member of the DnaJ Family of Proteins. Biochemical and Biophysical Research Communications, 1998, 243, 273-276.	1.0	4
314	The impact of the Human Genome Project on medical genetics. Trends in Molecular Medicine, 2001, 7, 229-231.	3.5	4
315	Increased incidence of bladder cancer, lymphoid leukaemia, and myeloma in a cohort of Queensland melanoma families. Familial Cancer, 2016, 15, 651-663.	0.9	4
316	A rare missense variant in protection of telomeres 1 (<i>POT1</i>) predisposes to a range of haematological malignancies. British Journal of Haematology, 2021, 192, e57-e60.	1.2	4
317	A 500-kb Sequence-Ready Cosmid Contig and Transcript Map of theMEN1Region on 11q13. Genomics, 1999, 55, 49-56.	1.3	3
318	Mutation spectrum of the first melanoma genome points finger firmly at ultraviolet light as the primary carcinogen. Pigment Cell and Melanoma Research, 2010, 23, 153-154.	1.5	3
319	Brca1 is involved in establishing murine pigmentation in a p53 and developmentally specific manner. Pigment Cell and Melanoma Research, 2012, 25, 530-532.	1.5	3
320	Cluster of pregnancyâ€associated melanoma: A case report and brief update. Journal of Dermatology, 2020, 47, 1054-1057.	0.6	3
321	Loss-of-function variants in <i>POT1</i> predispose to uveal melanoma. Journal of Medical Genetics, 2021, 58, 234-236.	1.5	3
322	Germline variants are associated with increased primary melanoma tumor thickness at diagnosis. Human Molecular Genetics, 2021, 29, 3578-3587.	1.4	3
323	Dual loss of <i>Rb1</i> and <i>Trp53</i> in melanocytes perturbs melanocyte homeostasis and genetic stability in vitro but does not cause melanoma or pigmentation defects in vivo. Pigment Cell and Melanoma Research, 2009, 22, 328-330.	1.5	2
324	Melanocyte homeostasis in vivo tolerates <i>Rb1</i> loss in a developmentally independent fashion. Pigment Cell and Melanoma Research, 2010, 23, 564-570.	1.5	2

#	Article	IF	CITATIONS
325	High-Risk Human Papillomavirus in Esophageal Squamous Cell Carcinoma—Response. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 409-410.	1.1	2
326	Genomic analysis of adult case of ocular surface giant congenital melanocytic nevus and associated clinicopathological findings. Ophthalmic Genetics, 2020, 41, 616-620.	0.5	2
327	Origin of rare Ha- <i>ras</i> alleles: relationship of VTR length to a 5′ polymorphic <i>Xho</i> I site. Genetical Research, 1989, 54, 149-153.	0.3	1
328	Advantages of whole-genome sequencing for identification of tumor etiology and clinically actionable genomic aberrations: lessons from the Australian Melanoma Genome Project. Melanoma Management, 2017, 4, 147-149.	0.1	1
329	Novel MAPK/AKT-impairing germline NRAS variant identified in a melanoma-prone family. Familial Cancer, 2022, 21, 347-355.	0.9	1
330	Functional reassessment of P16 variants using a transfection-based assay. , 1999, 82, 305.		1
331	Choroidal melanoma with synchronous Fuchs' adenoma and novel ATRX mutation. International Journal of Retina and Vitreous, 2022, 8, 24.	0.9	1
332	Mouse pigmentation mutants help identify a uveal melanoma oncogene. Pigment Cell and Melanoma Research, 2009, 22, 2-3.	1.5	0
333	webFOG: A web tool to map genomic features onto genes. Biochemical and Biophysical Research Communications, 2010, 401, 447-450.	1.0	0
334	Melanoma, Familial. , 2004, , 791-796.		0
335	Abstract 1743: SOX10 is required for cell cycle regulation and melanomagenesis , 2013, , .		Ο