Yiqiang Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9459542/publications.pdf

Version: 2024-02-01

		687363	580821
59	765	13	25
papers	citations	h-index	25 g-index
59	59	59	922
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1579-1584.	7.1	127
2	Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsystem Technologies, 2012, 18, 373-379.	2.0	70
3	Injection molding and characterization of PMMA-based microfluidic devices. Microsystem Technologies, 2020, 26, 1317-1324.	2.0	67
4	Design and optimization of a 3â€coil resonanceâ€based wireless power transfer system for biomedical implants. International Journal of Circuit Theory and Applications, 2015, 43, 1379-1390.	2.0	49
5	Applications of Modular Microfluidics Technology. Chinese Journal of Analytical Chemistry, 2018, 46, 1863-1871.	1.7	36
6	Laser-induced selective wax reflow for paper-based microfluidics. RSC Advances, 2019, 9, 11460-11464.	3.6	27
7	Fabrication and testing of metal/polymer microstructure heat exchangers based on micro embossed molding method. Microsystem Technologies, 2019, 25, 381-388.	2.0	27
8	PMMA to Polystyrene bonding for polymer based microfluidic systems. Microsystem Technologies, 2014, 20, 59-64.	2.0	23
9	Fabrication of Cyclo-olefin polymer-based microfluidic devices using CO ₂ laser ablation. Materials Research Express, 2018, 5, 095305.	1.6	23
10	Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation. Microsystem Technologies, 2017, 23, 5063-5069.	2.0	21
11	Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation. Biomedical Microdevices, 2019, 21, 83.	2.8	19
12	Low-cost PMMA-based microfluidics for the visualization of enhanced oil recovery. Oil and Gas Science and Technology, 2018, 73, 26.	1.4	18
13	Roll-to-roll wax transfer for rapid and batch fabrication of paper-based microfluidics. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	15
14	Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics. Journal of Micromechanics and Microengineering, 2012, 22, 027001.	2.6	13
15	Influence of factors on heat dissipation performance of composite metal–polymer heat exchanger with rectangular microstructure. Applied Thermal Engineering, 2016, 102, 1473-1480.	6.0	13
16	Lowâ€cost microfluidics: materials and methods. Micro and Nano Letters, 2018, 13, 1367-1372.	1.3	13
17	Recent Development of Wearable Microfluidics Applied in Body Fluid Testing and Drug Delivery. Chinese Journal of Analytical Chemistry, 2017, 45, 455-463.	1.7	12
18	Fully enclosed paper-based microfluidic devices using bio-compatible adhesive seals. Microsystem Technologies, 2018, 24, 1783-1787.	2.0	12

#	Article	IF	CITATIONS
19	Milk carton with integrated paperâ€based microfluidics for milk quality rapid test. Journal of Food Safety, 2018, 38, e12548.	2.3	12
20	Recent Development of Droplet Microfluidics in Digital Polymerase Chain Reaction. Chinese Journal of Analytical Chemistry, 2016, 44, 1300-1307.	1.7	11
21	Direct bonding of polymer/glass-based microfluidic chips with dry film photoresist. Microsystem Technologies, 2018, 24, 1659-1665.	2.0	11
22	CO2laser-induced bump formation and growth on polystyrene for multi-depth soft lithography molds. Journal of Micromechanics and Microengineering, 2012, 22, 115037.	2.6	10
23	Low-cost silicon wafer dicing using a craft cutter. Microsystem Technologies, 2015, 21, 1411-1414.	2.0	9
24	Rapid prototyping of flexible multilayer microfluidic devices using polyester sealing film. Microsystem Technologies, 2018, 24, 2847-2852.	2.0	9
25	Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles. Microsystem Technologies, 2015, 21, 445-449.	2.0	8
26	Lowâ€cost and flexible filmâ€based digital microfluidic devices. Micro and Nano Letters, 2020, 15, 163-165.	1.3	8
27	Assessment of microplastics using microfluidic approach. Environmental Geochemistry and Health, 2023, 45, 1045-1052.	3.4	8
28	Rapid prototyping of shrinkable BOPS-based microfluidic devices. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	7
29	Reversible bonding for microfluidic devices with UV release tape. Microfluidics and Nanofluidics, 2022, 26, 1.	2.2	7
30	Rapid and low-cost hot-embossing of polycaprolactone microfluidic devices. Materials Research Express, 2018, 5, 015305.	1.6	6
31	Non-woven fabric-based microfluidic devices with hydrophobic wax barrier. Microsystem Technologies, 2020, 26, 1637-1642.	2.0	6
32	Application of a new UV curable adhesive for rapid bonding in thermoplasticâ€based microfluidics. Micro and Nano Letters, 2019, 14, 211-214.	1.3	5
33	Programmable thermally actuated wax valve for low-cost nonwoven-based microfluidic systems. Microsystem Technologies, 2020, 26, 3847-3853.	2.0	5
34	Fluid control with hydrophobic pillars in paper-based microfluidics. Journal of Micromechanics and Microengineering, 2021, 31, 127002.	2.6	5
35	Fabrication of Microlens and Microlens Array on Polystyrene Using CO ₂ Laser. Advanced Materials Research, 0, 403-408, 3350-3353.	0.3	4
36	CO2 laser fabrication of hydrogel-based open-channel microfluidic devices. Biomedical Microdevices, 2021, 23, 47.	2.8	4

#	Article	IF	CITATIONS
37	Robust Image Feature Point Matching Based on Structural Distance. Communications in Computer and Information Science, 2015, , 142-149.	0.5	4
38	Thermoplastic polyurethane-based flexible multilayer microfluidic devices. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2020, 19, 1.	0.9	4
39	Polyformaldehyde-based microfluidics and application in enhanced oil recovery. Microsystem Technologies, 2022, 28, 947-954.	2.0	4
40	3-Coil resonance-based wireless power transfer system for implantable electronic., 2013,,.		3
41	Simulation and fabrication of integrated polystyrene microlens in microfluidic system. Proceedings of SPIE, 2013, , .	0.8	3
42	Laser micromachined wax-covered plastic paper as both sputter deposition shadow masks and deep-ultraviolet patterning masks for polymethylmethacrylate-based microfluidic systems. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2013, 12, 049701.	0.9	3
43	Seepage Time Soft Sensor Model of Nonwoven Fabric Based on the Extreme Learning Machine Integrating Monte Carlo. Sensors, 2021, 21, 2377.	3.8	3
44	Fabrication of Transparent and Flexible Digital Microfluidics Devices. Micromachines, 2022, 13, 498.	2.9	3
45	Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips. , 2013, , .		2
46	Adaptive Background Modelling for Image Sequences with Cluttered Background., 2014,,.		2
47	Continuous Size-Dependent Sorting of Ferromagnetic Nanoparticles in Laser-Ablated Microchannel. Journal of Nanomaterials, 2016, 2016, 1-8.	2.7	2
48	UV-curable micro-imprinting method for the fabrication of microstructure arrays. Microsystem Technologies, 2019, 25, 3311-3316.	2.0	2
49	PDMS-based microfluidic devices with shrinkable wax molds printed on biaxially orientated polystyrene film. Materials Research Express, 2019, 6, 075329.	1.6	2
50	Low-cost rapid prototyping of flexible plastic paper based microfluidic devices. , 2013, , .		1
51	Integrated lenses in polystyrene microfluidic devices. , 2013, , .		1
52	Longâ€term antiâ€endotoxin/ <i>E. coli</i> i> efficacy in mice transfected with AAV2/1â€muBPI ₂₅ â€muFcl³1. Apmis, 2016, 124, 888-895.	2.0	1
53	Lowâ€cost pyrophylliteâ€based microfluidic device for the study of enhanced oil recovery. Micro and Nano Letters, 2019, 14, 1349-1354.	1.3	1
54	Inertial effect on gas squeeze film for large radius disc excited by standing waves with complex modal shapes. International Journal of Modern Physics B, 2019, 33, 1950282.	2.0	1

#	Article	IF	CITATIONS
55	Controllable patterns and streaming of plane acoustic vortex with annular piezoelectric arrays excitation. Physics of Fluids, 2021, 33, 032009.	4.0	1
56	Numerical Simulation for Optimization of Plastics Process Parameters of Injection Molding Machine Based on Energy Consumption. DEStech Transactions on Engineering and Technology Research, 2016, , .	0.0	1
57	Low-cost digital microfluidic approach on thin and pliable polymer films. Instrumentation Science and Technology, 2022, 50, 496-506.	1.8	1
58	Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system. Microsystem Technologies, 2014, 20, 815-819.	2.0	0
59	The Primary Study for the Integration of Wax-Based Microfluidics on Textile Product. , 2019, , .		0