
Mei-Lin Go

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458858/publications.pdf Version: 2024-02-01

MELLIN CO

#	Article	IF	CITATIONS
1	Amide–Amine Replacement in Indole-2-carboxamides Yields Potent Mycobactericidal Agents with Improved Water Solubility. ACS Medicinal Chemistry Letters, 2021, 12, 704-712.	2.8	10
2	Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications. Molecular Neurobiology, 2021, 58, 106-117.	4.0	32
3	Mechanism-Based Inactivation of Cytochrome P450 3A4 and 3A5 by the Fibroblast Growth Factor Receptor Inhibitor Erdafitinib. Chemical Research in Toxicology, 2021, 34, 1800-1813.	3.3	11
4	Infigratinib Is a Reversible Inhibitor and Mechanism-Based Inactivator of Cytochrome P450 3A4. Drug Metabolism and Disposition, 2021, 49, 856-868.	3.3	16
5	High-Content Phenotypic Screen of a Focused TCAMS Drug Library Identifies Novel Disruptors of the Malaria Parasite Calcium Dynamics. ACS Chemical Biology, 2021, 16, 2348-2372.	3.4	4
6	Functionalized Dioxonaphthoimidazoliums: A Redox Cycling Chemotype with Potent Bactericidal Activities against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2021, 64, 15991-16007.	6.4	10
7	Antimalarial <i>N</i> ¹ , <i>N</i> ³ -Dialkyldioxonaphthoimidazoliums: Synthesis, Biological Activity, and Structure–activity Relationships. ACS Medicinal Chemistry Letters, 2020, 11, 49-55.	2.8	12
8	Resistance against Membrane-Inserting MmpL3 Inhibitor through Upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	1
9	Potency Increase of Spiroketal Analogs of Membrane Inserting Indolyl Mannich Base Antimycobacterials Is Due to Acquisition of MmpL3 Inhibition. ACS Infectious Diseases, 2020, 6, 1882-1893.	3.8	14
10	Extreme Drug Tolerance of Mycobacterium abscessus "Persisters― Frontiers in Microbiology, 2020, 11, 359.	3.5	42
11	Rifabutin Suppresses Inducible Clarithromycin Resistance in Mycobacterium abscessus by Blocking Induction of whiB7 and erm41. Antibiotics, 2020, 9, 72.	3.7	20
12	Galloyl esters of trans-stilbenes are inhibitors of FASN with anticancer activity on non-small cell lung cancer cells. European Journal of Medicinal Chemistry, 2019, 182, 111597.	5.5	15
13	Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in <i>Mycobacterium tuberculosis</i> . MBio, 2019, 10, .	4.1	63
14	The mechanistic effects of the dioxonaphthoimidazolium analog YM155 in renal cell carcinoma cell cycling and apoptosis. Life Sciences, 2018, 203, 282-290.	4.3	5
15	Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas. Cancers, 2018, 10, 89.	3.7	31
16	Anti-survivin effect of the small molecule inhibitor YM155 in RCC cells is mediated by time-dependent inhibition of the NF-κB pathway. Scientific Reports, 2018, 8, 10289.	3.3	9
17	Indolyl Azaspiroketal Mannich Bases Are Potent Antimycobacterial Agents with Selective Membrane Permeabilizing Effects and in Vivo Activity. Journal of Medicinal Chemistry, 2018, 61, 5733-5750.	6.4	28
18	A new generation of arachidonic acid analogues targeting cytosolic phospholipase A2. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-34.	0.0	0

Mei-Lin Go

#	Article	IF	CITATIONS
19	Amphiphilic Indole Derivatives as Antimycobacterial Agents: Structure–Activity Relationships and Membrane Targeting Properties. Journal of Medicinal Chemistry, 2017, 60, 2745-2763.	6.4	68
20	Indolylalkyltriphenylphosphonium Analogues Are Membrane-Depolarizing Mycobactericidal Agents. ACS Medicinal Chemistry Letters, 2017, 8, 1165-1170.	2.8	19
21	A New Generation of Arachidonic Acid Analogues as Potential Neurological Agent Targeting Cytosolic Phospholipase A2. Scientific Reports, 2017, 7, 13683.	3.3	24
22	Action of YM155 on clear cell renal cell carcinoma does not depend on survivin expression levels. PLoS ONE, 2017, 12, e0178168.	2.5	12
23	Dioxonaphthoimidazoliums are Potent and Selective Rogue Stem Cell Clearing Agents with SOX2â€Suppressing Properties. ChemMedChem, 2016, 11, 1944-1955.	3.2	6
24	Mitochondrial-Targeting MET Kinase Inhibitor Kills Erlotinib-Resistant Lung Cancer Cells. ACS Medicinal Chemistry Letters, 2016, 7, 807-812.	2.8	7
25	Dioxonaphthoimidazoliums AB1 and YM155 disrupt phosphorylation of p50 in the NF-κB pathway. Oncotarget, 2016, 7, 11625-11636.	1.8	12
26	<i>N</i> ′â€Alkylaminosulfonyl Analogues of 6â€Fluorobenzylideneindolinones with Desirable Physicochemical Profiles and Potent Growth Inhibitory Activities on Hepatocellular Carcinoma. ChemMedChem, 2015, 10, 1548-1558.	3.2	13
27	Determining the Functions of HIV-1 Tat and a Second Magnesium Ion in the CDK9/Cyclin T1 Complex: A Molecular Dynamics Simulation Study. PLoS ONE, 2015, 10, e0124673.	2.5	3
28	Antiproliferative, DNA intercalation and redox cycling activities of dioxonaphtho[2,3-d]imidazolium analogs of YM155: A structure–activity relationship study. European Journal of Medicinal Chemistry, 2015, 104, 42-56.	5.5	31
29	Functionalized tetrahydro-1H-pyrido[4,3-b]indoles: A novel chemotype with Sirtuin 2 inhibitory activity. European Journal of Medicinal Chemistry, 2015, 92, 145-155.	5.5	14
30	An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biology and Therapy, 2014, 15, 1280-1291.	3.4	53
31	Benzylideneâ€indolinones are effective as multiâ€ŧargeted kinase inhibitor therapeutics against hepatocellular carcinoma. Molecular Oncology, 2014, 8, 1266-1277.	4.6	18
32	Structure–toxicity relationship and structure–activity relationship study of 2-phenylaminophenylacetic acid derived compounds. Food and Chemical Toxicology, 2014, 71, 207-216.	3.6	5
33	Functionalized acridin-9-yl phenylamines protected neuronal HT22 cells from glutamate-induced cell death by reducing intracellular levels of free radical species. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1830-1838.	2.2	7
34	Functionalized indoleamines as potent, drug-like inhibitorsÂof isoprenylcysteineÂcarboxyl methyltransferase (Icmt). European Journal of Medicinal Chemistry, 2013, 63, 378-386.	5.5	26
35	Curcumin Analogues with Potent and Selective Antiâ€proliferative Activity on Acute Promyelocytic Leukemia: Involvement of Accumulated Misfolded Nuclear Receptor Coâ€repressor (Nâ€CoR) Protein as a Basis for Selective Activity. ChemMedChem, 2012, 7, 1567-1579.	3.2	22
36	Exploring the Anticancer Activity of Functionalized Isoindigos: Synthesis, Drugâ€like Potential, Mode of Action and Effect on Tumorâ€Induced Xenografts. ChemMedChem, 2012, 7, 777-791.	3.2	25

Mei-Lin Go

#	Article	IF	CITATIONS
37	Exploration and Optimization of Structure–Activity Relationships in Drug Design using the Taguchi Method. ChemMedChem, 2012, 7, 977-982.	3.2	1
38	Exploring Aigialomycin D and Its Analogues as Protein Kinase Inhibitors for Cancer Targets. ACS Medicinal Chemistry Letters, 2011, 2, 662-666.	2.8	26
39	In vitro and in vivo modulation of ABCG2 by functionalized aurones and structurally related analogs. Biochemical Pharmacology, 2011, 82, 1562-1571.	4.4	17
40	Aurones as Modulators of ABCG2 and ABCB1: Synthesis and Structure–Activity Relationships. ChemMedChem, 2011, 6, 713-724.	3.2	53
41	Anti-prion activities and drug-like potential of functionalized quinacrine analogs with basic phenyl residues at the 9-amino position. European Journal of Medicinal Chemistry, 2011, 46, 2917-2929.	5.5	39
42	Amino Derivatives of Indole As Potent Inhibitors of Isoprenylcysteine Carboxyl Methyltransferase. Journal of Medicinal Chemistry, 2010, 53, 6838-6850.	6.4	44
43	Dimethoxyaurones: Potent inhibitors of ABCG2 (breast cancer resistance protein). European Journal of Pharmaceutical Sciences, 2008, 35, 293-306.	4.0	70
44	Antiproliferative activity of chalcones with basic functionalities. Bioorganic and Medicinal Chemistry, 2007, 15, 7021-7034.	3.0	31
45	Antiplasmodial activity of ferrocenyl chalcones: Investigations into the role of ferrocene. European Journal of Pharmaceutical Sciences, 2006, 27, 175-187.	4.0	108
46	26Fe The Use of Iron-Based Drugs in Medicine. , 2005, , 179-200.		4
47	Antiplasmodial Chalcones Inhibit Sorbitol-Induced Hemolysis of Plasmodium falciparum -Infected Erythrocytes. Antimicrobial Agents and Chemotherapy, 2004, 48, 3241-3245.	3.2	92
48	Novel antiplasmodial agents. Medicinal Research Reviews, 2003, 23, 456-487.	10.5	46
49	Structure–activity relationships of antileishmanial and antimalarial chalcones. Bioorganic and Medicinal Chemistry, 2003, 11, 2729-2738.	3.0	229
50	Interaction of the Antimalarial Agents Halofantrine and Lumefantrine with Lipid Bilayers. Chemical and Pharmaceutical Bulletin, 2003, 51, 241-246.	1.3	1
51	Structure–activity and structure–binding studies of des-Asp1-angiotensin I analogues on the rabbit pulmonary artery. Regulatory Peptides, 2002, 106, 39-46.	1.9	5
52	O-Substituted derivatives of pralidoxime: muscarinic properties and protection against soman effects in rats. European Journal of Pharmacology, 2002, 442, 279-287.	3.5	9
53	Antimalarial activity of ferrocenyl chalcones. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2299-2302.	2.2	166
54	Antimalarial Alkoxylated and Hydroxylated Chalones:  Structureâ^'Activity Relationship Analysis. Journal of Medicinal Chemistry, 2001, 44, 4443-4452.	6.4	359

#	Article	IF	CITATIONS
55	Halofantrine-Phospholipid Interactions: Monolayer Studies Chemical and Pharmaceutical Bulletin, 2001, 49, 871-876.	1.3	8
56	Chiral resolution of atropine, homatropine and eight synthetic tropinyl and piperidinyl esters by capillary zone electrophoresis with cyclodextrin additives. Electrophoresis, 1999, 20, 198-203.	2.4	13
57	Stereospecific inhibition of cholinesterases by mefloquine enantiomers Chemical and Pharmaceutical Bulletin, 1987, 35, 409-412.	1.3	24