
Tim Hofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458796/publications.pdf Version: 2024-02-01

TIM HOFFD

#	Article	IF	CITATIONS
1	Cerebral Iron Deposition in Neurodegeneration. Biomolecules, 2022, 12, 714.	1.8	38
2	Effects of a human-based mixture of persistent organic pollutants on the in vivo exposed cerebellum and cerebellar neuronal cultures exposed in vitro. Environment International, 2021, 146, 106240.	4.8	10
3	Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reproductive Toxicology, 2021, 101, 93-114.	1.3	20
4	Interaction of Neuromelanin with Xenobiotics and Consequences for Neurodegeneration; Promising Experimental Models. Antioxidants, 2021, 10, 824.	2.2	20
5	Oxidative Stress in Human Toxicology. Antioxidants, 2021, 10, 1159.	2.2	7
6	Analysis of elimination half-lives in MamTKDB 1.0 related to bioaccumulation: Requirement of repeated administration and blood plasma values underrepresent tissues. Environment International, 2021, 155, 106592.	4.8	5
7	Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. Environment International, 2020, 144, 105811.	4.8	133
8	Bisphenols and Oxidative Stress Biomarkers—Associations Found in Human Studies, Evaluation of Methods Used, and Strengths and Weaknesses of the Biomarkers. International Journal of Environmental Research and Public Health, 2020, 17, 3609.	1.2	35
9	Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. Journal of Inorganic Biochemistry, 2019, 199, 110717.	1.5	39
10	Association between exposure to a mixture of phenols, pesticides, and phthalates and obesity: Comparison of three statistical models. Environment International, 2019, 123, 325-336.	4.8	265
11	Repeated five-day administration of L-BMAA, microcystin-LR, or as mixture, in adult C57BL/6 mice - lack of adverse cognitive effects. Scientific Reports, 2018, 8, 2308.	1.6	16
12	Restoration of Cognitive Performance in Mice Carrying a Deficient Allele of 8-Oxoguanine DNA Glycosylase by X-ray Irradiation. Neurotoxicity Research, 2018, 33, 824-836.	1.3	14
13	Time-dependent effects of perfluorinated compounds on viability in cerebellar granule neurons: Dependence on carbon chain length and functional group attached. NeuroToxicology, 2017, 63, 70-83.	1.4	35
14	Nucleic acid oxidative damage in Alzheimer's disease—explained by the hepcidin-ferroportin neuronal iron overload hypothesis?. Journal of Trace Elements in Medicine and Biology, 2016, 38, 1-9.	1.5	36
15	Comparison of Food Antioxidants and Iron Chelators in Two Cellular Free Radical Assays: Strong Protection by Luteolin. Journal of Agricultural and Food Chemistry, 2014, 62, 8402-8410.	2.4	26
16	Polyunsaturated fatty acid-derived chromones exhibiting potent antioxidant activity. Chemistry and Physics of Lipids, 2013, 170-171, 41-45.	1.5	20
17	Metal Dyshomeostasis and Inflammation in Alzheimer's and Parkinson's Diseases: Possible Impact of Environmental Exposures. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-19.	1.9	99
18	Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: Effects of aging and lifelong calorie restriction. Mechanisms of Ageing and Development, 2009, 130, 297-307.	2.2	81

Tim Hofer

#	Article	IF	CITATIONS
19	RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathologica, 2009, 118, 151-166.	3.9	134
20	Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiology of Aging, 2009, 30, 903-909.	1.5	61
21	Mitochondrial iron accumulation with age and functional consequences. Aging Cell, 2008, 7, 706-716.	3.0	99
22	Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Experimental Gerontology, 2008, 43, 563-570.	1.2	118
23	Long-Term Effects of Caloric Restriction or Exercise on DNA and RNA Oxidation Levels in White Blood Cells and Urine in Humans. Rejuvenation Research, 2008, 11, 793-799.	0.9	92
24	Mitochondrial nonâ€heme iron levels determine susceptibility to permeability transition pore (PTP) with age: The effects of lifeâ€long calorie restriction FASEB Journal, 2008, 22, 142-142.	0.2	0
25	Molecular mechanisms of life- and health-span extension: role of calorie restriction and exercise intervention. Applied Physiology, Nutrition and Metabolism, 2007, 32, 954-966.	0.9	62
26	Stress response of a freshwater clam along an abiotic gradient: too much oxygen may limit distribution. Functional Ecology, 2007, 21, 344-355.	1.7	20
27	Evaluation of sex differences on mitochondrial bioenergetics and apoptosis in mice. Experimental Gerontology, 2007, 42, 173-182.	1.2	64
28	A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biological Chemistry, 2006, 387, 103-11.	1.2	126
29	Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Research Reviews, 2006, 5, 179-195.	5.0	147
30	DNA oxidative damage and strand breaks in young healthy individuals: A gender difference and the role of life style factors. Free Radical Research, 2006, 40, 707-714.	1.5	52
31	Hepatic Oxidative Stress During Aging: Effects of 8% Long-Term Calorie Restriction and Lifelong Exercise. Antioxidants and Redox Signaling, 2006, 8, 529-538.	2.5	61
32	Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biological Chemistry, 2005, 386, 333-7.	1.2	170
33	The transcriptosomal response of human A549 lung cells to a hydrogen peroxide-generating system: relationship to DNA damage, cell cycle arrest, and caspase activation. Free Radical Biology and Medicine, 2004, 36, 881-896.	1.3	57
34	Cellular background level of 8-oxo-7,8-dihydro-2'-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis, 2002, 23, 1911-1918.	1.3	265
35	Optimization of the Workup Procedure for the Analysis of 8-Oxo-7,8-dihydro-2â€~-deoxyguanosine with Electrochemical Detection. Chemical Research in Toxicology, 2002, 15, 426-432.	1.7	50
36	Oxidation of 2′-deoxyguanosine by H2O2–ascorbate: evidence against free OH˙ and thermodynamic support for two-electron reduction of H2O2. Perkin Transactions II RSC, 2001, , 210-213.	1.1	20

#	Article	IF	CITATIONS
37	Methodological considerations and factors affecting 8-hydroxy-2′-deoxyguanosine analysis. Free Radical Research, 1998, 29, 511-524.	1.5	31
38	Reduction of Oxidation during the Preparation of DNA and Analysis of 8-Hydroxy-2â€~-deoxyguanosine. Chemical Research in Toxicology, 1998, 11, 882-887.	1.7	78