Peter B Kelemen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458743/publications.pdf

Version: 2024-02-01

181 papers

21,871 citations

80 h-index 9103 144 g-index

187 all docs

 $\frac{187}{\rm docs\,citations}$

times ranked

187

9262 citing authors

#	Article	IF	CITATIONS
1	Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 1995, 375, 747-753.	27.8	732
2	Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 2007, 35, 643.	4.4	642
3	The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions To Mineralogy and Petrology, 2001, 141, 643-658.	3.1	626
4	Genesis of high Mg# andesites and the continental crust. Contributions To Mineralogy and Petrology, 1995, 120, 1-19.	3.1	607
5	Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 1992, 358, 635-641.	27.8	597
6	A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 283-318.	3.4	590
7	In situ carbonation of peridotite for CO ₂ storage. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17295-17300.	7.1	523
8	Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 2008, 247, 133-153.	3.3	504
9	Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite. Journal of Petrology, 1990, 31, 51-98.	2.8	493
10	Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3997-4006.	7.1	492
11	Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 1998, 164, 387-406.	4.4	476
12	Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters, 1993, 120, 111-134.	4.4	446
13	On the conditions for lower crustal convective instability. Journal of Geophysical Research, 2001, 106, 6423-6446.	3.3	441
14	Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, 2009, 2, 837-841.	12.9	425
15	Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 2011, 307, 501-516.	4.4	414
16	Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. Journal of Geophysical Research, 2000, 105, 21591-21614.	3.3	409
17	Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth and Planetary Science Letters, 1997, 146, 475-488.	4.4	386
18	High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature, 1990, 345, 521-524.	27.8	339

#	Article	IF	Citations
19	Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO ₂ Capture and Storage. Annual Review of Earth and Planetary Sciences, 2011, 39, 545-576.	11.0	336
20	Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience, 2011, 4, 641-646.	12.9	330
21	A Detailed Geochemical Study of Island Arc Crust: the Talkeetna Arc Section, South–Central Alaska. Journal of Petrology, 2006, 47, 1051-1093.	2.8	264
22	Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 2015, 43, 167-205.	11.0	260
23	A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature, 2007, 446, 787-790.	27.8	255
24	Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. Journal of Geophysical Research, 1995, 100, 475-496.	3.3	251
25	Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media. Journal of Geophysical Research, 2001, 106, 2061-2077.	3.3	235
26	Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature, 1993, 364, 433-436.	27.8	227
27	Mantle thermal structure and active upwelling during continental breakup in the North Atlantic. Earth and Planetary Science Letters, 2001, 190, 251-266.	4.4	227
28	Channeling instability of upwelling melt in the mantle. Journal of Geophysical Research, 1995, 100, 20433-20450.	3.3	226
29	Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica Et Cosmochimica Acta, 2008, 72, 2349-2376.	3.9	223
30	Along-strike variation in the Aleutian Island Arc: Genesis of high Mg# andesite and implications for continental crust. Geophysical Monograph Series, 2003, , 223-276.	0.1	206
31	An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 2019, 1 , .	2.8	200
32	Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochimica Et Cosmochimica Acta, 2002, 66, 3481-3504.	3.9	195
33	Extreme chemical variability as a consequence of channelized melt transport. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	193
34	Origin of thick, high-velocity igneous crust along the U.S. East Coast Margin. Journal of Geophysical Research, 1995, 100, 10077-10094.	3.3	187
35	Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. Journal of Geophysical Research, 1995, 100, 423-438.	3.3	185
36	Role of Arc Processes in the Formation of Continental Crust. Annual Review of Earth and Planetary Sciences, 2015, 43, 363-404.	11.0	181

#	Article	IF	CITATIONS
37	Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth and Planetary Science Letters, 1998, 158, 53-65.	4.4	180
38	Reaction Between Ultramafic Rock and Fractionating Basaltic Magma II. Experimental Investigation of Reaction Between Olivine Tholeiite and Harzburgite at 1150-1050ÂC and 5 kb. Journal of Petrology, 1990, 31, 99-134.	2.8	177
39	The seismic mid-lithosphere discontinuity. Earth and Planetary Science Letters, 2015, 414, 45-57.	4.4	177
40	Carbon Mineralization: From Natural Analogues to Engineered Systems. Reviews in Mineralogy and Geochemistry, 2013, 77, 305-360.	4.8	174
41	Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation. Earth and Planetary Science Letters, 2012, 345-348, 81-89.	4.4	173
42	Observations of Li isotopic variations in the Trinity Ophiolite: Evidence for isotopic fractionation by diffusion during mantle melting. Geochimica Et Cosmochimica Acta, 2005, 69, 735-751.	3.9	169
43	Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: Implications for magma transport in the oceanic lower crust. Journal of Geophysical Research, 1997, 102, 27729-27749.	3.3	167
44	Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U–Pb zircon geochronology. Earth and Planetary Science Letters, 2016, 451, 185-195.	4.4	154
45	Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Geophysical Monograph Series, 2003, , 293-311.	0.1	152
46	Composition and Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE Systematics. Journal of Petrology, 2010, 51, 201-227.	2.8	152
47	Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: Restites from high degree melting. Earth and Planetary Science Letters, 1998, 154, 221-235.	4.4	150
48	Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening. Journal of Geophysical Research, 2003, 108, .	3.3	146
49	Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Physical Chemistry Chemical Physics, 2014, 16, 4679.	2.8	145
50	Tectonic development of the Samail ophiolite: Highâ€precision Uâ€Pb zircon geochronology and Smâ€Nd isotopic constraints on crustal growth and emplacement. Journal of Geophysical Research: Solid Earth, 2013, 118, 2085-2101.	3.4	140
51	Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology, 2007, 35, 459.	4.4	138
52	Dunite distribution in the Oman Ophiolite: Implications for melt flux through porous dunite conduits. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-21.	2.5	137
53	Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chemical Geology, 2012, 330-331, 86-100.	3.3	127
54	Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman. Frontiers in Microbiology, 2017, 8, 56.	3 . 5	126

#	Article	IF	Citations
55	Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nature Geoscience, 2016, 9, 197-205.	12.9	125
56	Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. Journal of Geophysical Research, 2003, 108, .	3.3	122
57	Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement. Geochimica Et Cosmochimica Acta, 2015, 160, 70-90.	3.9	121
58	Major element heterogeneity in the mantle source of the North Atlantic igneous province. Earth and Planetary Science Letters, 2000, 184, 251-268.	4.4	120
59	Assimilation of Ultramafic Rock in Subduction-Related Magmatic Arcs. Journal of Geology, 1986, 94, 829-843.	1.4	118
60	Rapid crustal accretion and magma assimilation in the Omanâ€U.A.E. ophiolite: High precision Uâ€Pb zircon geochronology of the gabbroic crust. Journal of Geophysical Research, 2012, 117, .	3.3	118
61	Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	115
62	Methods for resolving the origin of large igneous provinces from crustal seismology. Journal of Geophysical Research, 2002, 107, ECV 1-1-ECV 1-27.	3.3	113
63	A Felsic End to Bushveld Differentiation. Journal of Petrology, 2010, 51, 1891-1912.	2.8	111
64	A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite. Earth and Planetary Science Letters, 2010, 291, 215-227.	4.4	109
65	Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	105
66	Petrogenesis of the crust-mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	102
67	Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. Geochimica Et Cosmochimica Acta, 2016, 179, 217-241.	3.9	102
68	Microstructural and Rheological Evolution of a Mantle Shear Zone. Journal of Petrology, 2010, 51, 43-53.	2.8	100
69	Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	98
70	Three-dimensional flow and reaction in porous media: Implications for the Earth's mantle and sedimentary basins. Journal of Geophysical Research, 1997, 102, 14821-14833.	3.3	96
71	The Role of Subducted Basalt in the Source of Island Arc Magmas: Evidence from Seafloor Lavas of the Western Aleutians. Journal of Petrology, 2015, 56, 441-492.	2.8	96
72	Ambient weathering of magnesium oxide for CO2 removal from air. Nature Communications, 2020, 11, 3299.	12.8	95

#	Article	IF	CITATIONS
73	Evolution of olivine lattice preferred orientation during simple shear in the mantle. Earth and Planetary Science Letters, 2008, 272, 501-512.	4.4	94
74	Continental crust generated in oceanic arcs. Nature Geoscience, 2015, 8, 321-327.	12.9	94
75	Deep continental roots and cratons. Nature, 2021, 596, 199-210.	27.8	93
76	Melt migration through the oceanic lower crust: a constraint from melt percolation modeling with finite solid diffusion. Earth and Planetary Science Letters, 1998, 156, 1-11.	4.4	92
77	Trench-Parallel Anisotropy Produced by Foundering of Arc Lower Crust. Science, 2007, 317, 108-111.	12.6	92
78	Magmatic development of an intra-oceanic arc: High-precision U-Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska. Bulletin of the Geological Society of America, 2007, 119, 1168-1184.	3.3	91
79	Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights. Chemical Geology, 2020, 550, 119628.	3.3	90
80	Consequences of diffuse and channelled porous melt migration on uranium series disequilibria. Geochimica Et Cosmochimica Acta, 2002, 66, 4133-4148.	3.9	89
81	Crustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	81
82	Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: Observations from the Ingalls and Oman ophiolites. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	79
83	Osmium isotope systematics of the Proterozoic and Phanerozoic ophiolitic chromitites: In situ ion probe analysis of primary Os-rich PGM. Earth and Planetary Science Letters, 2006, 245, 777-791.	4.4	78
84	Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman. Contributions To Mineralogy and Petrology, 2012, 164, 821-837.	3.1	77
85	Ultra-depleted, shallow cratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland. Contributions To Mineralogy and Petrology, 2006, 152, 335-347.	3.1	76
86	The Case for Reactive Crystallization at Mid-Ocean Ridges. Journal of Petrology, 2010, 51, 1913-1940.	2.8	76
87	Assimilation of peridotite in zoned calc-alkaline plutonic complexes: evidence from the Big Jim complex, Washington Cascades. Contributions To Mineralogy and Petrology, 1986, 94, 12-28.	3.1	75
88	Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. Journal of Geophysical Research, 2008, 113, .	3.3	75
89	Cooling rates in the lower crust of the Oman ophiolite: Ca in olivine, revisited. Earth and Planetary Science Letters, 2008, 267, 69-82.	4.4	74
90	Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	73

#	Article	IF	CITATIONS
91	Periodic Formation of Magma Fractures and Generation of Layered Gabbros in the Lower Crust Beneath Oceanic Spreading Ridges. Geophysical Monograph Series, 0, , 267-289.	0.1	71
92	Carbonation rates of peridotite in the Samail Ophiolite, Sultanate of Oman, constrained through 14C dating and stable isotopes. Geochimica Et Cosmochimica Acta, 2014, 126, 371-397.	3.9	70
93	Subduction erosion of the Jurassic Talkeetna-Bonanza arc and the Mesozoic accretionary tectonics of western North America. Geology, 2005, 33, 881.	4.4	67
94	Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska. Bulletin of the Geological Society of America, 2005, 117, 902.	3.3	66
95	Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite. Geochimica Et Cosmochimica Acta, 2017, 209, 161-183.	3.9	62
96	Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak Island, Alaska: An analogue for lowâ€velocity middle crust in modern arcs. Tectonics, 2010, 29, .	2.8	59
97	Buoyancy of the continental upper mantle. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	58
98	Gravity anomalies and crustal structure at the southeast Greenland margin. Journal of Geophysical Research, 2001, 106, 8853-8870.	3.3	57
99	The petrogenesis of ultramafic rocks in the > 3.7 Ga Isua supracrustal belt, southern West Greenland: Geochemical evidence for two distinct magmatic cumulate trends. Gondwana Research, 2015, 28, 565-580.	6.0	57
100	Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust. Geology, 2012, 40, 199-202.	4.4	50
101	Spatial variations in cooling rate in the mantle section of the Samail ophiolite in Oman: Implications for formation of lithosphere at mid-ocean ridges. Earth and Planetary Science Letters, 2017, 465, 134-144.	4.4	48
102	Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at $15 {\hat A}^\circ N$ on the Mid-Atlantic Ridge: A structural synthesis of ODP Leg 209. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	47
103	The influence of water and LPO on the initiation and evolution of mantle shear zones. Earth and Planetary Science Letters, 2013, 375, 222-233.	4.4	47
104	Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada. Mineralogy and Petrology, 2018, 112, 755-765.	1.1	47
105	Elucidating the differences in the carbon mineralization behaviors of calcium and magnesium bearing alumino-silicates and magnesium silicates for CO2 storage. Fuel, 2020, 277, 117900.	6.4	47
106	Osmium isotopes in the Wiedemann Fjord mantle xenoliths: A unique record of cratonic mantle formation by melt depletion in the Archaean. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	46
107	Post-breakup basaltic magmatism along the East Greenland Tertiary rifted margin. Earth and Planetary Science Letters, 1998, 160, 845-862.	4.4	45
108	Microstructures in Hole 1274A peridotites, ODP Leg 209, Midâ€Atlantic Ridge: Tracking the fate of melts percolating in peridotite as the lithosphere is intercepted. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	42

#	Article	IF	CITATIONS
109	A gold-bearing horizon in the Kap Edvard Holm Complex, East Greenland. Economic Geology, 1995, 90, 1288-1300.	3.8	41
110	Fluid rock interactions on residual mantle peridotites overlain by shallow oceanic limestones: Insights from Wadi Fins, Sultanate of Oman. Chemical Geology, 2018, 498, 139-149.	3.3	40
111	Trace elements in clinopyroxenes from Aleutian xenoliths: Implications for primitive subduction magmatism in an island arc. Earth and Planetary Science Letters, 2007, 256, 617-632.	4.4	39
112	The thermal structure of continental crust in active orogens: insight from Miocene eclogite and granulite xenoliths of the Pamir Mountains. Journal of Metamorphic Geology, 2012, 30, 413-434.	3.4	39
113	Formation of Plagioclase Lherzolite and Associated Dunite–Harzburgite–Lherzolite Sequences by Multiple Episodes of Melt Percolation and Melt–Rock Reaction: an Example from the Trinity Ophiolite, California, USA. Journal of Petrology, 2016, 57, 815-838.	2.8	38
114	Near-solidus melts of MORB + 4Âwt% H2O at 0.8–2.8ÂGPa applied to issues of subduction magmatism continent formation. Contributions To Mineralogy and Petrology, 2018, 173, 1.	n and 3.1	38
115	Significance of the concentration gradients associated with dunite bodies in the Josephine and Trinity ophiolites. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	36
116	Ultramafic Rock Carbonation: Constraints From Listvenite Core BT1B, Oman Drilling Project. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019060.	3.4	34
117	Peridotite enclaves hosted by Mesoarchaean TTG-suite orthogneisses in the Fiskefjord region of southern West Greenland. GeoResJ, 2015, 7, 22-34.	1.4	33
118	Iron transformations during low temperature alteration of variably serpentinized rocks from the Samail ophiolite, Oman. Geochimica Et Cosmochimica Acta, 2018, 222, 704-728.	3.9	30
119	In situ carbon mineralization in ultramafic rocks: Natural processes and possible engineered methods. Energy Procedia, 2018, 146, 92-102.	1.8	30
120	Sr and O isotopes in western Aleutian seafloor lavas: Implications for the source of fluids and trace element character of arc volcanic rocks. Earth and Planetary Science Letters, 2017, 475, 169-180.	4.4	28
121	Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	28
122	Multitracer determination of apparent groundwater ages in peridotite aquifers within the Samail ophiolite, Sultanate of Oman. Earth and Planetary Science Letters, 2019, 516, 37-48.	4.4	28
123	Accessing the Subsurface Biosphere Within Rocks Undergoing Active Lowâ€Temperature Serpentinization in the Samail Ophiolite (Oman Drilling Project). Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006315.	3.0	27
124	Evolution of the Kap Edvard Holm Complex: a Mafic Intrusion at a Rifted Continental Margin. Journal of Petrology, 1996, 37, 497-519.	2.8	26
125	Highly depleted cratonic mantle in West Greenland extending into diamond stability field in the Proterozoic. Lithos, 2013, 168-169, 160-172.	1.4	26
126	Distinctly different parental magmas for calc-alkaline plutons and tholeitic lavas in the central and eastern Aleutian arc. Earth and Planetary Science Letters, 2015, 431, 119-126.	4.4	26

#	Article	IF	CITATIONS
127	Genesis of high Mg# andesites and the continental crust. Contributions To Mineralogy and Petrology, 1995, 120, 1-19.	3.1	26
128	Investigation of the strength contrast at the Moho: A case study from the Oman Ophiolite. Geology, 2010, 38, 679-682.	4.4	25
129	Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, Uâ€Th/He, Smâ€Nd, and Luâ€Hf dating. Tectonics, 2011, 30, .	2.8	25
130	Phaseâ€Field Modeling of Reactionâ€Driven Cracking: Determining Conditions for Extensive Olivine Serpentinization. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018614.	3.4	25
131	Zircon fission-track ages from the Gasherbrum Diorite, Karakoram Range, northern Pakistan. Geology, 1989, 17, 1044.	4.4	24
132	Lipid Biomarker Record of the Serpentinite-Hosted Ecosystem of the Samail Ophiolite, Oman and Implications for the Search for Biosignatures on Mars. Astrobiology, 2020, 20, 830-845.	3.0	23
133	Measurement of Volume Change and Mass Transfer During Serpentinization: Insights From the Oman Drilling Project. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018877.	3.4	23
134	Highâ€Precision Uâ€Pb Zircon Dating of Late Magmatism in the Samail Ophiolite: A Record of Subduction Initiation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020758.	3.4	22
135	Lowâ€Temperature Hydrogen Formation During Aqueous Alteration of Serpentinized Peridotite in the Samail Ophiolite. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021981.	3.4	22
136	U-Pb geochronology of volcanic rocks from the Jurassic Talkeetna Formation and detrital zircons from prearc and postarc sequences: Implications for the age of magmatism and inheritance in the Talkeetna arc., 2007,, 253-271.		21
137	On the hydration of olivine in ultramafic rocks: Implications from Fe isotopes in serpentinites. Geochimica Et Cosmochimica Acta, 2017, 215, 105-121.	3.9	21
138	Constraints on the composition of the Aleutian arc lower crust from <i>V_P</i> /o>V _S . Geophysical Research Letters, 2013, 40, 2579-2584.	4.0	20
139	A Poroelastic Model of Serpentinization: Exploring the Interplay Between Rheology, Surface Energy, Reaction, and Fluid Flow. Journal of Geophysical Research: Solid Earth, 2018, 123, 8653-8675.	3.4	20
140	Trapped Melt in the Josephine Peridotite: Implications for Permeability and Melt Extraction in the Upper Mantle. Journal of Petrology, 2010, 51, 185-200.	2.8	19
141	Major element mobility during serpentinization, oxidation and weathering of mantle peridotite at low temperatures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20180433.	3.4	19
142	A Mg Isotopic Perspective on the Mobility of Magnesium During Serpentinization and Carbonation of the Oman Ophiolite. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020237.	3.4	19
143	Geochemical, Biological, and Clumped Isotopologue Evidence for Substantial Microbial Methane Production Under Carbon Limitation in Serpentinites of the Samail Ophiolite, Oman. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006025.	3.0	19
144	Scientific Drilling and Related Research in the Samail Ophiolite, Sultanate of Oman. Scientific Drilling, 0, 15, 64-71.	0.6	18

#	Article	IF	CITATIONS
145	Brittle Deformation of Carbonated Peridotiteâ€"Insights From Listvenites of the Samail Ophiolite (Oman Drilling Project Hole BT1B). Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020199.	3.4	17
146	Competition Between Crystallizationâ€Induced Expansion and Creep Compaction During Gypsum Formation, and Implications for Serpentinization. Journal of Geophysical Research: Solid Earth, 2018, 123, 5372-5393.	3.4	16
147	Permeability Profiles Across the Crustâ€Mantle Sections in the Oman Drilling Project Inferred From Dry and Wet Resistivity Data. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018698.	3.4	16
148	Characteristics, Origins, and Biosignature Preservation Potential of Carbonateâ€Bearing Rocks Within and Outside of Jezero Crater. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006898.	3.6	16
149	Initial Results From the Oman Drilling Project Multiâ€Borehole Observatory: Petrogenesis and Ongoing Alteration of Mantle Peridotite in the Weathering Horizon. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022729.	3.4	16
150	Gold and platinum-group element mineralization in the Kruuse Fjord gabbro complex, East Greenland. Economic Geology, 1997, 92, 490-501.	3.8	15
151	Crustal Structure of the Greenland″celand Ridge from Joint Refraction and Reflection Seismic Tomography. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019847.	3.4	15
152	The Origin of the Land under the Sea. Scientific American, 2009, 300, 52-57.	1.0	14
153	Lattice-preferred orientation and microstructure of peridotites from ODP Hole 1274A (15°39â€2N), Mid-Atlantic Ridge: Testing models of mantle upwelling and tectonic exhumation. Earth and Planetary Science Letters, 2011, 301, 199-212.	4.4	14
154	Melt viscosity, temperature and transport processes, Troodos ophiolite, Cyprus. Earth and Planetary Science Letters, 2002, 201, 337-352.	4.4	13
155	Geochemical Profiles Across the Listveniteâ€Metamorphic Transition in the Basal Megathrust of the Semail Ophiolite: Results From Drilling at OmanDP Hole BT1B. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022733.	3.4	13
156	The Composition of the Lower Oceanic Crust in the Wadi Khafifah Section of the Southern Samail (Oman) Ophiolite. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021986.	3.4	12
157	Timing of Magnetite Growth Associated With Peridotiteâ€Hosted Carbonate Veins in the SE Samail Ophiolite, Wadi Fins, Oman. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018632.	3.4	11
158	Major Mineral Fraction and Physical Properties of Carbonated Peridotite (Listvenite) From ICDP Oman Drilling Project Hole BT1B Inferred From Xâ€Ray CT Core Images. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022719.	3.4	11
159	Deep Sourced Fluids for Peridotite Carbonation in the Shallow Mantle Wedge of a Fossil Subduction Zone: Sr and C Isotope Profiles of OmanDP Hole BT1B. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	11
160	Listvenite Formation During Mass Transfer into the Leading Edge of the Mantle Wedge: Initial Results from Oman Drilling Project Hole BT1B. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	11
161	Magmatic and metamorphic evolution of the oceanic crust in the western flank of the MAR crest zone at $15 \text{Å}^{\circ}44 \text{\&} \text{\&}^{2}\text{N}$: Investigation of cores from sites 1275B and 1275D, JOIDES resolution Leg 209. Petrology, 2008, 16, 353-375.	0.9	10
162	Applications and limitations of U–Th disequilibria systematics for determining ages of carbonate alteration minerals in peridotite. Chemical Geology, 2015, 412, 151-166.	3.3	10

#	Article	IF	CITATIONS
163	Ductile deformation during carbonation of serpentinized peridotite. Nature Communications, 2022, 13,	12.8	10
164	Chapter 15 Fluid and Thermal Dissolution Instabilities in Magmatic Systems. International Geophysics, 1994, 57, 355-379.	0.6	9
165	Reply to "Methane origin in the Samail ophiolite: Comment on  Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability'―[Geochim. Cosmochim. Acta 179 (2016) 217–241]. Geochimica Et Cosmochimica Acta, 2017, 197, 471-473.	3.9	9
166	High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive melt: COMMENT AND REPLY: COMMENT. Geology, 2007, 35, e149-e150.	4.4	7
167	Hydrothermal Alteration of the Ocean Crust and Patterns in Mineralization With Depth as Measured by Microâ€Imaging Infrared Spectroscopy. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021976.	3.4	7
168	Thermal History of Lithosphere Formed Beneath Fast Spreading Ridges: Constraints From the Mantle Transition Zone of the East Pacific Rise at Hess Deep and Oman Drilling Project, Wadi Zeeb, Samail Ophiolite. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	7
169	Reaction-Driven Cracking During Mineral Hydration, Carbonation and Oxidation. , 2013, , .		6
170	Crack geometry of serpentinized peridotites inferred from onboard ultrasonic data from the Oman Drilling Project. Tectonophysics, 2021, 814, 228978.	2.2	6
171	Experimental Investigation of the Pressure of Crystallization of Ca(OH) 2: Implications for the Reactive Cracking Process. Geochemistry, Geophysics, Geosystems, 2018, 19, 3448-3458.	2.5	5
172	Nanostructure of serpentinisation products: Importance for water transport and low-temperature alteration. Earth and Planetary Science Letters, 2021, 576, 117212.	4.4	5
173	Orogenic Lherzolites and Mantle Processes: Editorial. Journal of Petrology, 2001, 42, 3-4.	2.8	4
174	Focussed Flow of Melt in the Upper Mantle: Extraction of MORB Beneath Oceanic Spreading Ridges. Mineralogical Magazine, 1994, 58A, 466-467.	1.4	3
175	Tracing Carbonate Formation, Serpentinization, and Biological Materials With Microâ€∤Mesoâ€Scale Infrared Imaging Spectroscopy in a Mars Analog System, Samail Ophiolite, Oman. Earth and Space Science, 2021, 8, e2021EA001637.	2.6	3
176	Geochemical Characterization of the Oman Crustâ€Mantle Transition Zone, OmanDP Holes CM1A and CM2B. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	3
177	Arc Crustal Genesis and Evolution. GSA Today, 2006, 16, 20.	2.0	2
178	A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges., 1999,, 67-102.		1
179	Characterizing Hydration of the Ocean Crust Using Shortwave Infrared Microimaging Spectroscopy of ICDP Oman Drilling Project Cores. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022676.	3.4	1
180	Shallow Mantle Composition and Dynamics: Fifth International Orogenic Lherzolite Conference: Foreword. Journal of Petrology, 2010, 51, 3-7.	2.8	0

#	Article	IF	CITATIONS
181	Planning the Drilling of the Samail Ophiolite in Oman. Eos, 2013, 94, 32-32.	0.1	0