Kumar Sudesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 2000, 25, 1503-1555.	11.8	1,867
2	Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 2014, 99, 649-665.	5.1	1,046
3	Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 2009, 106, 1-12.	1.4	415
4	Sustainability of Biobased and Biodegradable Plastics. Clean - Soil, Air, Water, 2008, 36, 433-442.	0.7	295
5	Isolation and recovery of microbial polyhydroxyalkanoates. EXPRESS Polymer Letters, 2011, 5, 620-634.	1.1	225
6	Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresource Technology, 2008, 99, 6844-6851.	4.8	165
7	Effects of dietary organic acids on growth, nutrient digestibility and gut microflora of red hybrid tilapia, <i>Oreochromis</i> sp., and subsequent survival during a challenge test with <i>Streptococcus agalactiae</i> . Aquaculture Research, 2009, 40, 1490-1500.	0.9	153
8	Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences, 2022, 170, 106103.	1.9	150
9	Scaffolds from electrospun polyhydroxyalkanoate copolymers: Fabrication, characterization, bioabsorption and tissue response. Biomaterials, 2008, 29, 1307-1317.	5.7	144
10	Biosynthesis and Characterization of Poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from Palm Oil Products in a Wautersia eutropha Mutant. Biotechnology Letters, 2005, 27, 1405-1410.	1.1	132
11	Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: Effects of clay loading and compatibiliser. Polymer Degradation and Stability, 2012, 97, 1345-1354.	2.7	125
12	Biodegradation of different formulations of polyhydroxybutyrate films in soil. SpringerPlus, 2016, 5, 762.	1.2	122
13	Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 2022, 294, 133764.	4.2	109
14	Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresource Technology, 2012, 121, 320-327.	4.8	107
15	Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polymer Degradation and Stability, 2006, 91, 2931-2940.	2.7	104
16	Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polymer Degradation and Stability, 2008, 93, 17-23.	2.7	101
17	Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polymer Degradation and Stability, 2006, 91, 1800-1807.	2.7	99
18	Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass and Bioenergy, 2013, 50, 1-9.	2.9	94

Kumar Sudesh

#	Article	IF	CITATIONS
19	Rapid and Efficient Gene Delivery into Plant Cells Using Designed Peptide Carriers. Biomacromolecules, 2013, 14, 10-16.	2.6	94
20	Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 169.	2.0	94
21	Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polymer Degradation and Stability, 2004, 84, 129-134.	2.7	87
22	A new biological recovery approach for PHA using mealworm, Tenebrio molitor. Journal of Biotechnology, 2016, 239, 98-105.	1.9	86
23	Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Applied Microbiology and Biotechnology, 2011, 89, 1373-1386.	1.7	84
24	Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Applied Microbiology and Biotechnology, 1997, 47, 207-211.	1.7	81
25	Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. International Journal of Biological Macromolecules, 2002, 30, 97-104.	3.6	81
26	Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Scientific Reports, 2021, 11, 1896.	1.6	80
27	Poly(3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation. Separation and Purification Technology, 2011, 76, 419-427.	3.9	78
28	Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Scientific Reports, 2017, 7, 5312.	1.6	78
29	Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polymer Degradation and Stability, 2013, 98, 331-338.	2.7	77
30	Bioplastics: A boon or bane?. Renewable and Sustainable Energy Reviews, 2021, 147, 111237.	8.2	76
31	Isolation and Characterization of a Burkholderia sp. USM (JCM15050) Capable of Producing Polyhydroxyalkanoate (PHA) from Triglycerides, Fatty Acids and Glycerols. Journal of Polymers and the Environment, 2010, 18, 584-592.	2.4	70
32	Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresource Technology, 2008, 99, 4903-4909.	4.8	69
33	Conversion of rice husks to polyhydroxyalkanoates (<scp>PHA</scp>) via a threeâ€step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by <i>Burkholderia cepacia</i> <scp>USM</scp> (<scp>JCM</scp> 15050). Journal of Chemical Technology and Biotechnology. 2017, 92, 100-108.	1.6	69
34	Conventional Technology and Nanotechnology in Wood Preservation: A Review. BioResources, 2018, 13, .	0.5	69
35	Evaluation of jatropha oil to produce poly(3-hydroxybutyrate) by Cupriavidus necator H16. Polymer Degradation and Stability, 2010, 95, 1365-1369.	2.7	67
36	Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 759-772.	1.4	64

#	Article	IF	CITATIONS
37	Revisiting the Single Cell Protein Application of Cupriavidus necator H16 and Recovering Bioplastic Granules Simultaneously. PLoS ONE, 2013, 8, e78528.	1.1	61
38	Biosynthesis and mobilization of poly(3-hydroxybutyrate) [P(3HB)] by Spirulina platensis. International Journal of Biological Macromolecules, 2005, 36, 144-151.	3.6	59
39	Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate production by Salinivibrio sp. M318. International Journal of Biological Macromolecules, 2019, 141, 885-892.	3.6	59
40	Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polymer Degradation and Stability, 2010, 95, 1436-1442.	2.7	54
41	Properties of binderless particleboard from oil palm trunk with addition of polyhydroxyalkanoates. Composites Part B: Engineering, 2012, 43, 1109-1116.	5.9	54
42	Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 547-556.	1.4	51
43	Molecular design and biosynthesis of biodegradable polyesters. Polymers for Advanced Technologies, 2000, 11, 865-872.	1.6	49
44	Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2020, 145, 173-188.	3.6	47
45	Degradation of Polyhydroxyalkanoate (PHA): a Review. Journal of Siberian Federal University - Biology, 2017, 10, 21-225.	0.2	47
46	Biosynthesis and native granule characteristics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Delftia acidovorans. International Journal of Biological Macromolecules, 2007, 40, 466-471.	3.6	46
47	Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers using jatropha oil as the main carbon source. Process Biochemistry, 2011, 46, 1572-1578.	1.8	46
48	Characterization of the Highly Active Polyhydroxyalkanoate Synthase of Chromobacterium sp. Strain USM2. Applied and Environmental Microbiology, 2011, 77, 2926-2933.	1.4	46
49	Evaluation of date seed oil and date molasses as novel carbon sources for the production of poly(3Hydroxybutyrate-co-3Hydroxyhexanoate) by Cupriavidus necator H16 Re 2058/pCB113. Industrial Crops and Products, 2018, 119, 83-92.	2.5	45
50	A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Applied Microbiology and Biotechnology, 2018, 102, 2117-2127.	1.7	44
51	Characterization and Properties of G4X Mutants ofRalstonia eutropha PHA Synthase for Poly(3-hydroxybutyrate) Biosynthesis inEscherichia coli. Macromolecular Bioscience, 2005, 5, 197-206.	2.1	43
52	Nitrileâ€functionalized Hg(II)―and Ag(I)â€ <i>N</i> â€heterocyclic carbene complexes: synthesis, crystal structures, nuclease and DNA binding activities. Applied Organometallic Chemistry, 2012, 26, 689-700.	1.7	43
53	An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm. Journal of Biotechnology, 2018, 265, 31-39.	1.9	43
54	PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Applied Microbiology and Biotechnology, 2019, 103, 1131-1141.	1.7	43

#	Article	IF	CITATIONS
55	DNA-functionalized thermoresponsive bioconjugates synthesized via ATRP and click chemistry. Polymer, 2011, 52, 895-900.	1.8	42
56	Simultaneous Adsorption and Photocatalytic Degradation of Malachite Green Using Electrospun P(3HB)-TiO ₂ Nanocomposite Fibers and Films. International Journal of Photoenergy, 2011, 2011, 1-11.	1.4	42
57	Fabrication and Characterization of an Electrospun PHA/Graphene Silver Nanocomposite Scaffold for Antibacterial Applications. Materials, 2018, 11, 1673.	1.3	42
58	Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. Nanomaterials, 2022, 12, 576.	1.9	42
59	Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16. Separation and Purification Technology, 2017, 172, 1-6.	3.9	40
60	Boron Nitride Doped Polyhydroxyalkanoate/Chitosan Nanocomposite for Antibacterial and Biological Applications. Nanomaterials, 2019, 9, 645.	1.9	40
61	The Oilâ€Absorbing Property of Polyhydroxyalkanoate Films and its Practical Application: A Refreshing New Outlook for an Old Degrading Material. Macromolecular Bioscience, 2007, 7, 1199-1205.	2.1	38
62	Microbial Degradation of Rubber: Actinobacteria. Polymers, 2021, 13, 1989.	2.0	38
63	Genetic Analysis of <i>Comamonas acidovorans</i> Polyhydroxyalkanoate Synthase and Factors Affecting the Incorporation of 4-Hydroxybutyrate Monomer. Applied and Environmental Microbiology, 1998, 64, 3437-3443.	1.4	38
64	Improved production of poly(4-hydroxybutyrate) by Comamonas acidovorans and its freeze-fracture morphology. International Journal of Biological Macromolecules, 1999, 25, 79-85.	3.6	37
65	Biosynthesis of P(3HB- co -3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113. International Journal of Biological Macromolecules, 2017, 102, 1112-1119.	3.6	37
66	Evaluation of Sludge Palm Oil as Feedstock and Development of Efficient Method for its Utilization to Produce Polyhydroxyalkanoate. Waste and Biomass Valorization, 2019, 10, 709-720.	1.8	37
67	Thermoresponsive Micellization and Micellar Stability of Poly(<i>N</i> -isopropylacrylamide)- <i>b</i> -DNA Diblock and Miktoarm Star Polymers. Langmuir, 2012, 28, 14347-14356.	1.6	36
68	Spectroscopic Evidence for the Unusual Stereochemical Configuration of an Endosome‧pecific Lipid. Angewandte Chemie - International Edition, 2012, 51, 533-535.	7.2	35
69	Fabrication of biopolymer polyhydroxyalkanoate/chitosan and 2D molybdenum disulfide–doped scaffolds for antibacterial and biomedical applications. Applied Microbiology and Biotechnology, 2020, 104, 3121-3131.	1.7	35
70	Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. Journal of Applied Microbiology, 2013, 114, 384-395.	1.4	34
71	Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. International Journal of Biological Macromolecules, 2020, 159, 250-257.	3.6	34
72	Characterization and Biodegradability of Rice Husk-Filled Polymer Composites. Polymers, 2021, 13, 104.	2.0	34

#	Article	IF	CITATIONS
73	Solar Photocatalytic Decolorization and Detoxification of Industrial Batik Dye Wastewater Using P(3HB)â€TiO ₂ Nanocomposite Films. Clean - Soil, Air, Water, 2011, 39, 265-273.	0.7	32
74	Characterization of Site-Specific Mutations in a Short-Chain-Length/Medium-Chain-Length Polyhydroxyalkanoate Synthase: <i>In Vivo</i> and <i>In Vitro</i> Studies of Enzymatic Activity and Substrate Specificity. Applied and Environmental Microbiology, 2013, 79, 3813-3821.	1.4	32
75	RNA-Seq Analysis Provides Insights for Understanding Photoautotrophic Polyhydroxyalkanoate Production in Recombinant Synechocystis Sp PLoS ONE, 2014, 9, e86368.	1.1	32
76	Efficient production of polyhydroxyalkanoates (PHAs) from <i>Pseudomonas mendocina</i> PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1440-1450.	0.6	32
77	Formation of new polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer in Burkholderia sp Applied Microbiology and Biotechnology, 2011, 89, 1599-1609.	1.7	31
78	Asymmetric Open-Closed Dimer Mechanism of Polyhydroxyalkanoate Synthase PhaC. IScience, 2020, 23, 101084.	1.9	31
79	Polyhydroxyalkanoate (PHA) synthase genes and PHA-associated gene clusters in Pseudomonas spp. and Janthinobacterium spp. isolated from Antarctica. Journal of Biotechnology, 2020, 313, 18-28.	1.9	31
80	Biodegradability of Epoxidized Soybean Oil Based Thermosets in Compost Soil Environment. Journal of Polymers and the Environment, 2014, 22, 140-147.	2.4	29
81	Effects of polyhydroxyalkanoate degradation on soil microbial community. Polymer Degradation and Stability, 2016, 131, 9-19.	2.7	28
82	Enzyme-Mimic Peptide Assembly To Achieve Amidolytic Activity. Biomacromolecules, 2016, 17, 3375-3385.	2.6	28
83	Composite properties and biodegradation of biologically recovered P(3HB- co -3HHx) reinforced with short kenaf fibers. Polymer Degradation and Stability, 2017, 137, 100-108.	2.7	27
84	The Use of Palm Oil-Based Waste Cooking Oil to Enhance the Production of Polyhydroxybutyrate [P(3HB)] by Cupriavidus necator H16 Strain. Arabian Journal for Science and Engineering, 2018, 43, 3453-3463.	1.7	27
85	Biodegradation of fibrillated oil palm trunk fiber by a novel thermophilic, anaerobic, xylanolytic bacterium Caldicoprobacter sp. CL-2 isolated from compost. Enzyme and Microbial Technology, 2018, 111, 21-28.	1.6	27
86	Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. Current Research in Biotechnology, 2022, 4, 87-101.	1.9	27
87	Potential of Oil Palm Trunk Sap as a Novel Inexpensive Renewable Carbon Feedstock for Polyhydroxyalkanoate Biosynthesis and as a Bacterial Growth Medium. Clean - Soil, Air, Water, 2012, 40, 310-317.	0.7	26
88	Identification of a new polyhydroxyalkanoate (PHA) producer Aquitalea sp. USM4 (JCM 19919) and characterization of its PHA synthase. Journal of Bioscience and Bioengineering, 2016, 122, 550-557.	1.1	26
89	Production of Polyhydroxyalkanoates From Underutilized Plant Oils by <i>Cupriavidus necator</i> . Clean - Soil, Air, Water, 2018, 46, 1700542.	0.7	26
90	Biosynthesis and characterization of novel polyhydroxyalkanoate polymers with high elastic property by Cupriavidus necator PHBâ^'4 transformant. Polymer Degradation and Stability, 2010, 95, 2226-2232.	2.7	25

#	Article	IF	CITATIONS
91	Efficient ethanol production from separated parenchyma and vascular bundle of oil palm trunk. Bioresource Technology, 2012, 125, 37-42.	4.8	25
92	Site-directed saturation mutagenesis at residue F420 and recombination with another beneficial mutation of Ralstonia eutropha polyhydroxyalkanoate synthase. Biotechnology Letters, 2005, 27, 705-712.	1.1	24
93	Enhanced Recovery and Purification of P(3HB-co-3HHx) from Recombinant Cupriavidus necator Using Alkaline Digestion Method. Applied Biochemistry and Biotechnology, 2012, 167, 524-535.	1.4	24
94	Identification of new rubber-degrading bacterial strains from aged latex. Polymer Degradation and Stability, 2014, 109, 354-361.	2.7	24
95	Optimization of Poly(<i>N</i> -isopropylacrylamide) as an Artificial Amidase. Biomacromolecules, 2015, 16, 411-421.	2.6	24
96	Recovery and subsequent characterization of polyhydroxybutyrate from <i>Rhodococcus equi</i> cells grown on crude palm kernel oil. Journal of Taibah University for Science, 2016, 10, 543-550.	1.1	24
97	Biodegradation of Natural Rubber and Natural Rubber Products by Streptomyces sp. Strain CFMR 7. Journal of Polymers and the Environment, 2017, 25, 606-616.	2.4	24
98	Study of electrospun fish gelatin nanofilms from benign organic acids as solvents. Food Packaging and Shelf Life, 2019, 19, 66-75.	3.3	24
99	Phenol and p-nitrophenol biodegradations by acclimated activated sludge: Influence of operational conditions on biodegradation kinetics and responding microbial communities. Journal of Environmental Chemical Engineering, 2021, 9, 105420.	3.3	24
100	Enhanced Incorporation of 3-Hydroxy-4-Methylvalerate Unit into Biosynthetic Polyhydroxyalkanoate Using Leucine as a Precursor. AMB Express, 2011, 1, 6.	1.4	23
101	PHA Production and PHA Synthases of the Halophilic Bacterium Halomonas sp. SF2003. Bioengineering, 2020, 7, 29.	1.6	23
102	Electron and X-ray diffraction study on poly(4-hydroxybutyrate). Polymer, 2001, 42, 8915-8918.	1.8	22
103	Polyhydroxyalkanoate Film Formation and Synthase Activity During In Vitro and In Situ Polymerization on Hydrophobic Surfaces. Biomacromolecules, 2008, 9, 2811-2818.	2.6	22
104	Biosynthesis and mobilization of a novel polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate monomer produced by Burkholderia sp. USM (JCM15050). Bioresource Technology, 2010, 101, 7916-7923.	4.8	22
105	Factors affecting the freeze-fracture morphology of in vivo polyhydroxyalkanoate granules. Canadian Journal of Microbiology, 2000, 46, 304-311.	0.8	21
106	Atomic Force Microscopic Observation of in Vitro Polymerized Poly[(R)-3-hydroxybutyrate]: Insight into Possible Mechanism of Granule Formation. Biomacromolecules, 2005, 6, 2671-2677.	2.6	21
107	Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) by recombinant Escherichia coli expressing leucine metabolism-related enzymes derived from Clostridium difficile. Journal of Bioscience and Bioengineering, 2014, 117, 670-675.	1.1	21
108	Double-stranded DNA introduction into intact plants using peptide–DNA complexes. Plant Biotechnology, 2015, 32, 39-45.	0.5	21

#	Article	IF	CITATIONS
109	Screening and Evaluation of Poly(3-hydroxybutyrate) with Rhodococcus equi Using Different Carbon Sources. Arabian Journal for Science and Engineering, 2017, 42, 2371-2379.	1.7	21
110	A novel and wide substrate specific polyhydroxyalkanoate (PHA) synthase from unculturable bacteria found in mangrove soil. Journal of Polymer Research, 2018, 25, 1.	1.2	21
111	High cell density culture of Cupriavidus necator H16 and improved biological recovery of polyhydroxyalkanoates using mealworms. Journal of Biotechnology, 2019, 305, 35-42.	1.9	21
112	Production of P(3HB-co-4HB) copolymer with high 4HB molar fraction by Burkholderia contaminans Kad1 PHA synthase. Biochemical Engineering Journal, 2020, 153, 107394.	1.8	21
113	Potential Applications of Polyhydroxyalkanoates as a Biomaterial for the Aging Population. Polymer Degradation and Stability, 2020, 181, 109371.	2.7	21
114	Revelation of the ability of Burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express, 2012, 2, 41.	1.4	20
115	Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater. BMC Microbiology, 2014, 14, 318.	1.3	19
116	In vitro biocompatibility evaluation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer in fibroblast cells. Journal of Biomedical Materials Research - Part A, 2007, 81A, 317-325.	2.1	18
117	Direct production of polyhydroxybutyrate from waste starch by newly-isolated <i>Bacillus aryabhattai</i> T34-N4. Environmental Technology (United Kingdom), 2020, 41, 3318-3328.	1.2	18
118	Efficient bioconversion of palm acid oil and palm kernel acid oil to poly(3-hydroxybutyrate) by Cupriavidus necator. Canadian Journal of Chemistry, 2008, 86, 533-539.	0.6	17
119	Polyhydroxyalkanoate (PHA) accumulating bacteria from the gut of higher termite Macrotermes carbonarius (Blattodea: Termitidae). World Journal of Microbiology and Biotechnology, 2010, 26, 1015-1024.	1.7	17
120	Biosynthesis of novel polyhydroxyalkanoate containing 3-hydroxy-4-methylvalerate by Chromobacterium sp. USM2. Journal of Applied Microbiology, 2011, 111, 559-571.	1.4	17
121	Expression of Aeromonas caviae polyhydroxyalkanoate synthase gene in Burkholderia sp. USM (JCM15050) enables the biosynthesis of SCL-MCL PHA from palm oil products. Journal of Applied Microbiology, 2012, 112, 45-54.	1.4	17
122	Influence of steam treatment on the properties of particleboard made from oil palm trunk with addition of polyhydroxyalkanoates. Industrial Crops and Products, 2013, 51, 334-341.	2.5	17
123	Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid. Applied Biochemistry and Biotechnology, 2017, 183, 412-425.	1.4	17
124	Evaluation of soil burial biodegradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on the basis of change in copolymer composition monitored by thermally assisted hydrolysis and methylation-gas chromatography. Journal of Analytical and Applied Pyrolysis, 2019, 137, 146-150.	2.6	17
125	Polyhydroxyalkanoates from Palm Oil: Biodegradable Plastics. SpringerBriefs in Microbiology, 2013, , .	0.1	16
126	Directed evolution of poly[(R)-3-hydroxybutyrate] depolymerase using cell surface display system: functional importance of asparagine at position 285. Applied Microbiology and Biotechnology, 2013, 97, 4859-4871.	1.7	16

#	Article	IF	CITATIONS
127	Optimization of <i>Salmonella</i> Typhi biofilm assay on polypropylene microtiter plates using response surface methodology. Biofouling, 2016, 32, 477-487.	0.8	16
128	Direct observation of polyhydroxyalkanoate granule-associated-proteins on native granules and on poly(3-hydroxybutyrate) single crystals by atomic force microscopy. Polymer Degradation and Stability, 2004, 83, 281-287.	2.7	15
129	Structural characterization of nanoparticles from thermoresponsive poly(N-isopropylacrylamide)-DNA conjugate. Journal of Colloid and Interface Science, 2012, 374, 315-320.	5.0	15
130	Biosynthesis of poly(3-hydroxybutyrate) and its copolymers by Yangia sp. ND199 from different carbon sources. International Journal of Biological Macromolecules, 2016, 84, 361-366.	3.6	15
131	Green Nanotechnology for Synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanoparticles for sustained bortezomib release using supercritical CO2 assisted particle formation combined with electrodeposition. International Journal of Biological Macromolecules, 2018, 107, 436-445.	3.6	15
132	Production of P(3HBâ€ <i>co</i> â€3HHx) with Controlled Compositions by Recombinant <i>Cupriavidus necator</i> Re2058/pCB113 from Renewable Resources. Clean - Soil, Air, Water, 2016, 44, 1234-1241.	0.7	14
133	Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers, 2022, 14, 2141.	2.0	14
134	Surface structure, morphology and stability of polyhydroxyalkanoate inclusions characterised by atomic force microscopy. Polymer Degradation and Stability, 2002, 77, 77-85.	2.7	13
135	Heterologous expression of Cupriavidus sp. USMAA2-4 PHA synthase gene in PHBâ~'4 mutant for the production of poly(3-hydroxybutyrate) and its copolymers. World Journal of Microbiology and Biotechnology, 2010, 26, 1595-1603.	1.7	13
136	Characterization of the depolymerizing activity of commercial lipases and detection of lipase-like activities in animal organ extracts using poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thin film. AMB Express, 2016, 6, 97.	1.4	13
137	Enhancement of bioplastic polyhydroxybutyrate P(3HB) production from glucose by newly engineered strain Cupriavidus necator NSDG-GG using response surface methodology. 3 Biotech, 2018, 8, 330.	1.1	13
138	Identification and characterization of ectoine-producing bacteria isolated from Can Gio mangrove soil in Vietnam. Annals of Microbiology, 2019, 69, 819-828.	1.1	13
139	Biosynthesis and characterization of co and ter-polyesters of polyhydroxyalkanoates containing high monomeric fractions of 4-hydroxybutyrate and 5-hydroxyvalerate via a novel PHA synthase. Polymer Degradation and Stability, 2019, 163, 122-135.	2.7	13
140	Lipid production by Lipomyces starkeyi using sap squeezed from felled old oil palm trunks. Journal of Bioscience and Bioengineering, 2019, 127, 726-731.	1.1	13
141	Direct observation of polyhydroxyalkanoate chains by atomic force microscopy. Ultramicroscopy, 2002, 91, 157-164.	0.8	12
142	Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach. Journal of Bioscience and Bioengineering, 2016, 121, 355-364.	1.1	12
143	Production and recovery of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) from biodiesel liquid waste (BLW). Journal of Basic Microbiology, 2018, 58, 977-986.	1.8	12
144	A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant in batch fill-and-draw fermentation. Journal of Biotechnology, 2020, 307, 77-86.	1.9	12

#	Article	IF	CITATIONS
145	Electrospun (Nickel and palladium) tin(IV) oxide/polyaniline/polyhydroxy-3-butyrate biodegradable nanocomposite fibers for low temperature ethanol gas sensing. Nanotechnology, 2020, 31, 425503.	1.3	12
146	Identification of regions affecting enzyme activity, substrate binding, dimer stabilization and polyhydroxyalkanoate (PHA) granule morphology in the PHA synthase of Aquitalea sp. USM4. International Journal of Biological Macromolecules, 2021, 186, 414-423.	3.6	12
147	Polyhydroxyalkanoate Synthesis by Recombinant Escherichia coli JM109 Expressing PHA Biosynthesis Genes from Comamonas sp. EB172. Journal of Microbial & Biochemical Technology, 2012, 04, .	0.2	12
148	Organization of Polyhydroxyalkanoate Synthase for In Vitro Polymerization as Revealed by Atomic Force Microscopy. Macromolecular Bioscience, 2005, 5, 929-935.	2.1	11
149	Isolation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) producer from Malaysian environment using Î ³ -butyrolactone as carbon source. World Journal of Microbiology and Biotechnology, 2009, 25, 1199-1206.	1.7	11
150	Molecular characterisation of phaCAB from Comamonas sp. EB172 for functional expression in Escherichia coli JM109. Microbiological Research, 2012, 167, 550-557.	2.5	11
151	Enhancement of Stress Tolerance in the Polyhydroxyalkanoate Producers without Mobilization of the Accumulated Granules. Applied Biochemistry and Biotechnology, 2014, 172, 1585-1598.	1.4	11
152	Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia. Journal of Biotechnology, 2015, 214, 47-48.	1.9	11
153	Validation of thermally assisted hydrolysis and methylation-gas chromatography for rapid and direct compositional analysis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in whole bacterial cells. Journal of Chromatography A, 2016, 1471, 186-191.	1.8	11
154	Properties of Particleboard Manufactured from Oil Palm Trunk Waste Using Polylactic Acid as a Natural Binder. Waste and Biomass Valorization, 2019, 10, 179-186.	1.8	11
155	Complete Genome Sequence of a Novel Polyhydroxyalkanoate (PHA) Producer, Jeongeupia sp. USM3 (JCM 19920) and Characterization of Its PHA Synthases. Current Microbiology, 2020, 77, 500-508.	1.0	11
156	Utilization of banana (Musa sp.) fronds extract as an alternative carbon source for poly(3-hydroxybutyrate) production by Cupriavidus necator H16. Biocatalysis and Agricultural Biotechnology, 2021, 34, 102048.	1.5	11
157	Effect of decomposing oil palm trunk fibers on plant growth and soil microbial community composition. Journal of Environmental Management, 2021, 295, 113050.	3.8	11
158	A Comparative Study of Structural and Ethanol Gas Sensing Properties of Pure, Nickel and Palladium Doped SnO2 Nanorods Synthesised by the Hydrothermal Method. Journal of Physical Science, 2019, 30, 127-143.	0.5	11
159	Identification of three homologous latex-clearing protein (lcp) genes from the genome of Streptomyces sp. strain CFMR 7. Gene, 2017, 628, 146-155.	1.0	10
160	Development and evaluation of controlled release fertilizer using P(3HB-co-3HHx) on oil palm plants (nursery stage) and soil microbes. Biocatalysis and Agricultural Biotechnology, 2020, 28, 101710.	1.5	10
161	Genome Mining Reveals the Biosynthetic Pathways of Polyhydroxyalkanoate and Ectoines of the Halophilic Strain Salinivibrio proteolyticus M318 Isolated from Fermented Shrimp Paste. Marine Biotechnology, 2020, 22, 651-660.	1.1	10
162	Mealworm (Tenebrio molitor) oil characterization and optimization of the free fatty acid pretreatment via acid-catalyzed esterification. Fuel, 2021, 299, 120905.	3.4	10

#	Article	IF	CITATIONS
163	Mutagenic and clastogenic characterization of poststerilized poly(3â€hydroxybutyrateâ€ <i>co</i> â€4â€hydroxybutyrate) copolymer biosynthesized by <i>Delftia acidovorans</i> . Journal of Biomedical Materials Research - Part A, 2009, 91A, 786-794.	2.1	9
164	Densitometry based microassay for the determination of lipase depolymerizing activity on polyhydroxyalkanoate. AMB Express, 2013, 3, 22.	1.4	9
165	A study on the effects of organoclay content and compatibilizer addition on the properties of biodegradable poly(butylene succinate) nanocomposites under natural weathering. Journal of Composite Materials, 2015, 49, 891-902.	1.2	9
166	Structural Analysis of ZnO Nanoparticles Reinforced P(3HB-co-15Âmol% 3HHx) Bioplastic Composite. Journal of Polymers and the Environment, 2017, 25, 1251-1261.	2.4	9
167	Biosynthesized Poly(3-Hydroxybutyrate) on Coated Pineapple Leaf Fiber Papers for Biodegradable Packaging Application. Polymers, 2021, 13, 1733.	2.0	9
168	Biosynthesis of polyhydroxyalkanoates using Cupriavidus necator H16 and its application for particleboard production. Journal of Polymer Research, 2018, 25, 1.	1.2	8
169	Modelling of polyhydroxyalkanoate synthase from Aquitalea sp. USM4 suggests a novel mechanism for polymer elongation. International Journal of Biological Macromolecules, 2018, 119, 438-445.	3.6	8
170	Advances in Polyhydroxyalkanoate (PHA): Unraveling the Development and New Perspectives. Journal of Biobased Materials and Bioenergy, 2014, 8, 118-129.	0.1	8
171	Effect of Microwave Pretreatment on the Properties of Particleboard Made from Para Rubber Wood Sawdust with the Addition of Polyhydroxyalkanoates. Sains Malaysiana, 2017, 46, 1361-1367.	0.3	7
172	Cloning and characterization of poly(3â€hydroxybutyrate) biosynthesis genes from <i>Pseudomonas</i> sp. USM 4â€55. Journal of Basic Microbiology, 2010, 50, 179-189.	1.8	6
173	Display of Functionally Active PHB Depolymerase on <i>Escherichia Coli</i> Cell Surface. Macromolecular Bioscience, 2012, 12, 218-224.	2.1	6
174	The effects of melt grafted maleated polybutylene succinate on the properties of poly(hydroxybutyrateâ€coâ€hydroxyhexanoate)/polybutylene succinate blends. Journal of Vinyl and Additive Technology, 2021, 27, 567-588.	1.8	6
175	Rubber Degrading Strains: Microtetraspora and Dactylosporangium. Polymers, 2021, 13, 3524.	2.0	6
176	Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	6
177	Chemical-Induced Inhibition of Blue Light-Mediated Seedling Development Caused by Disruption of Upstream Signal Transduction Involving Cryptochromes inArabidopsis thaliana. Plant and Cell Physiology, 2016, 58, pcw181.	1.5	5
178	Cupriavidus malaysiensis sp. nov., a novel poly(3-hydroxybutyrate-co-4-hydroxybutyrate) accumulating bacterium isolated from the Malaysian environment. Antonie Van Leeuwenhoek, 2018, 111, 361-372.	0.7	5
179	Effect of feeding strategy on the protein and fatty acid contents of black soldier fly prepupae (Hermetia illucens) for the potential applications as animal feed and promising alternative protein-rich food. IOP Conference Series: Materials Science and Engineering, 2020, 716, 012006.	0.3	5
180	Biocontrol potential of <i>Aspergillus terreus</i> , endophytic fungus against <i>Rigidoporus microporus</i> and <i>Corynespora cassiicola,</i> pathogens of rubber tree. Archives of Phytopathology and Plant Protection, 2021, 54, 1014-1032.	0.6	5

#	Article	IF	CITATIONS
181	Cloning and Characterisation of (R)-3-hydroxyacyl-acyl Carrier Protein-coenzyme A Transferase Gene (phaG) from Pseudomonas sp. USM 4-55. Tropical Life Sciences Research, 2009, 20, 1-14.	0.5	5
182	Occurrence of poly(hydroxyalkanoate) in the gut homogenate of a phylogenetically higher termite: <i>Macrotermes carbonarius</i> . Canadian Journal of Chemistry, 2008, 86, 512-515.	0.6	4
183	Comparison of quantification methods and subsequent characterization of polyhydroxybutyrate film sample utilizing pretreated cane molasses as carbon source. IOP Conference Series: Materials Science and Engineering, 2020, 716, 012013.	0.3	4
184	Physicochemical characteristics of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) electrospun nanofibres for the adsorption of phenol. Journal of Experimental Nanoscience, 2020, 15, 26-53.	1.3	4
185	Electrotransformation of thermophilic bacterium Caldimonas manganoxidans. Journal of Microbiological Methods, 2022, 192, 106375.	0.7	4
186	Factors affecting the freeze-fracture morphology of in vivo polyhydroxyalkanoate granules. Canadian Journal of Microbiology, 2000, 46, 304-11.	0.8	4
187	Influence of Thermal Treatment on the Molecular Weights of Polyhydroxyalkanoate Containing 3-Hydroxyhexanoate. Advanced Materials Research, 2013, 812, 250-253.	0.3	3
188	Effects of mutation at position 285 of Ralstonia pickettii T1 poly[(R)-3-hydroxybutyrate] depolymerase on its activities. Applied Microbiology and Biotechnology, 2014, 98, 7061-7068.	1.7	3
189	Revalorization of adsorbed residual oil in spent bleaching clay as a sole carbon source for polyhydroxyalkanoate (PHA) accumulation in Cupriavidus necator Re2058/pCB113. Polymer Journal, 2021, 53, 169-178.	1.3	3
190	Surface oxidation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) via photo-activated chlorine dioxide radical. Polymer Degradation and Stability, 2021, 191, 109661.	2.7	3
191	Screening of bacteria for PHA production using waste glycerol as carbon source and the ability of new strain to produce P(3HB-co-3HV) copolymer. Malaysian Journal of Microbiology, 2016, , .	0.1	3
192	Biosynthesis of Polyhydroxyalkanoates (PHA) from Vegetable Oils and Their By-Products by Wild-Type and Recombinant Microbes. , 2020, , 257-290.		3
193	Streptomyces sp. AC04842: Genomic Insights and Functional Expression of Its Latex Clearing Protein Genes (lcp1 and lcp2) When Cultivated With Natural and Vulcanized Rubber as the Sole Carbon Source. Frontiers in Microbiology, 2022, 13, 854427.	1.5	3
194	Polyhydroxyalkanoate Pellets as Novel Immobilization Medium for Phenol Biodegradation by Activated Sludge. Key Engineering Materials, 0, 920, 51-56.	0.4	3
195	Analysis of Free Sugar and Starch in Oil Palm Trunks (Elaeis Guineensis Jacq.) from Various Cultivars as a Feedstock for Bioethanol Production. International Journal of Green Energy, 2015, , 150218144136008.	2.1	2
196	Rebuttal to the comment on article "Poly(3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation― Separation and Purification Technology, 2016, 158, 94-95.	3.9	2
197	Synthesis of Polyesters III: Acyltransferase as Catalyst. Green Chemistry and Sustainable Technology, 2019, , 199-231.	0.4	2
198	In Vivo Characterization and Application of the PHA Synthase from Azotobacter vinelandii for the Biosynthesis of Polyhydroxyalkanoate Containing 4-Hydroxybutyrate. Polymers, 2021, 13, 1576.	2.0	2

#	Article	IF	CITATIONS
199	Fabrication and Degradation of Electrospun Polyhydroxyalkanoate Film. Journal of Siberian Federal University - Biology, 2015, 8, 236-253.	0.2	2
200	Development of Biocompatible Polyhydroxyalkanoate/Chitosan-Tungsten Disulphide Nanocomposite for Antibacterial and Biological Applications. Polymers, 2022, 14, 2224.	2.0	2
201	Potential of mealworms used in polyhydroxyalkanoate/bioplastic recovery as red hybrid tilapia (Oreochromis sp.) feed ingredient. Scientific Reports, 2022, 12, .	1.6	2
202	PHOTOTACTIC MOTILITY OF SYNECHOCYSTIS SP. UNIWG (CYANOBACTERIA) FROM BRACKISH ENVIRONMENT1. Journal of Phycology, 2010, 46, 102-111.	1.0	1
203	Correction to: Identification and characterization of ectoine-producing bacteria isolated from Can Gio mangrove soil in Vietnam. Annals of Microbiology, 2019, 69, 1589-1589.	1.1	1
204	Reactive oxygen species scavenging capacities of oil palm trunk sap evaluated using the electron spin resonance spin trapping method. Industrial Crops and Products, 2022, 182, 114887.	2.5	1
205	Nanofibrous Scaffolds of Bio-Polyesters: In Vitro and In Vivo Characterizations and Tissue Response. , 2010, , .		Ο
206	Thermal Properties of Polyhydroxyalkanoates. , 2014, , 441-473.		0
207	Characteristics of limestone soil collected from Gunung Lang, Perak and metagenomic analysis of the soil microbial community. Malaysian Journal of Microbiology, 2015, , .	0.1	0
208	Isolation and identification of bacteria and fungi growing spontaneously on polyhydroxyalkanoate pellets recovered by a new biological process. Malaysian Journal of Microbiology, 2016, , .	0.1	0