Mohammad Boshir Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458529/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 2014, 473-474, 619-641.	3.9	2,812
2	Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 2017, 323, 274-298.	6.5	886
3	Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Science of the Total Environment, 2015, 532, 112-126.	3.9	860
4	Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology, 2016, 214, 836-851.	4.8	597
5	Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 2017, 185, 70-78.	3.8	318
6	A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 2020, 387, 121682.	6.5	295
7	Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chemical Engineering Journal, 2017, 311, 348-358.	6.6	270
8	Recent Developments of Carboxymethyl Cellulose. Polymers, 2021, 13, 1345.	2.0	258
9	Insight into biochar properties and its cost analysis. Biomass and Bioenergy, 2016, 84, 76-86.	2.9	250
10	Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. Journal of Cleaner Production, 2019, 225, 405-413.	4.6	182
11	The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresource Technology, 2013, 144, 247-254.	4.8	163
12	Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresource Technology, 2017, 238, 306-312.	4.8	160
13	Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Science of the Total Environment, 2020, 720, 137662.	3.9	156
14	Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar. Science of the Total Environment, 2020, 716, 137015.	3.9	153
15	Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Science of the Total Environment, 2020, 707, 135544.	3.9	145
16	Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2020, 2, 100019.	2.2	144
17	Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation: Progress, limitations and future directions. Science of the Total Environment, 2018, 633, 546-559.	3.9	121
18	Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol. Chemical Engineering Journal, 2019, 359, 713-722.	6.6	120

#	Article	IF	CITATIONS
19	Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of Environmental Management, 2016, 172, 193-200.	3.8	118
20	Nano-Fe 0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite. Chemical Engineering Journal, 2017, 322, 571-581.	6.6	114
21	Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors. Chemosphere, 2017, 189, 717-729.	4.2	109
22	Sorptive removal of phenolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater. Chemical Engineering Journal, 2018, 335, 801-811.	6.6	108
23	High retention membrane bioreactors: Challenges and opportunities. Bioresource Technology, 2014, 167, 539-546.	4.8	101
24	Microplastic particles in the aquatic environment: A systematic review. Science of the Total Environment, 2021, 775, 145793.	3.9	101
25	Preparation of microporous activated carbon and its modification for arsenic removal from water. Journal of Industrial and Engineering Chemistry, 2014, 20, 887-896.	2.9	98
26	Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of ï€-ï€ electron-donor-acceptor interactions and hydrogen bonds. Journal of Hazardous Materials, 2018, 360, 270-278.	6.5	92
27	Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water. Chemical Engineering Research and Design, 2020, 136, 1-14.	2.7	91
28	Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere, 2020, 243, 125366.	4.2	77
29	The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application. Processes, 2020, 8, 203.	1.3	76
30	Per- and polyfluoroalkyl substances in soil and sediments: Occurrence, fate, remediation and future outlook. Science of the Total Environment, 2020, 748, 141251.	3.9	75
31	Improving sulfonamide antibiotics removal from swine wastewater by supplying a new pomelo peel derived biochar in an anaerobic membrane bioreactor. Bioresource Technology, 2021, 319, 124160.	4.8	63
32	Photocatalysis of estrone in water and wastewater: Comparison between Au-TiO2 nanocomposite and TiO2, and degradation by-products. Science of the Total Environment, 2018, 610-611, 521-530.	3.9	60
33	Box-Behnken design for extraction optimization of crude polysaccharides from Tunisian Phormidium versicolor cyanobacteria (NCC 466): Partial characterization, in vitro antioxidant and antimicrobial activities. International Journal of Biological Macromolecules, 2017, 105, 1501-1510.	3.6	56
34	Improved photocatalysis of perfluorooctanoic acid in water and wastewater by Ga2O3/UV system assisted by peroxymonosulfate. Chemosphere, 2020, 239, 124722.	4.2	55
35	Distribution, transformation and remediation of poly- and per-fluoroalkyl substances (PFAS) in wastewater sources. Chemical Engineering Research and Design, 2022, 164, 91-108.	2.7	48
36	Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney, Australia. Transportation Research, Part D: Transport and Environment, 2018, 62, 112-124.	3.2	47

#	Article	IF	CITATIONS
37	Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application. Science of the Total Environment, 2017, 609, 885-895.	3.9	46
38	Genetic effects of welding fumes on the progression of neurodegenerative diseases. NeuroToxicology, 2019, 71, 93-101.	1.4	37
39	Applying a new pomelo peel derived biochar in microbial fell cell for enhancing sulfonamide antibiotics removal in swine wastewater. Bioresource Technology, 2020, 318, 123886.	4.8	36
40	Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture. Processes, 2020, 8, 654.	1.3	34
41	Sorptive removal of dissolved organic matter in biologically-treated effluent by functionalized biochar and carbon nanotubes: Importance of sorbent functionality. Bioresource Technology, 2018, 269, 9-17.	4.8	33
42	Genetic effects of welding fumes on the development of respiratory system diseases. Computers in Biology and Medicine, 2019, 108, 142-149.	3.9	30
43	Removing arsenic from water by coprecipitation with iron: Effect of arsenic and iron concentrations and adsorbent incorporation. Chemosphere, 2019, 226, 431-438.	4.2	30
44	Polysaccharides from Phormidium versicolor (NCC466) protecting HepG2 human hepatocellular carcinoma cells and rat liver tissues from cadmium toxicity: Evidence from in vitro and in vivo tests. International Journal of Biological Macromolecules, 2018, 113, 813-820.	3.6	25
45	Removal of antibiotics (sulfamethazine, tetracycline and chloramphenicol) from aqueous solution by raw and nitrogen plasma modified steel shavings. Science of the Total Environment, 2017, 601-602, 845-856.	3.9	24
46	A computational approach to identify blood cell-expressed Parkinson's disease biomarkers that are coordinately expressed in brain tissue. Computers in Biology and Medicine, 2019, 113, 103385.	3.9	23
47	Conversion of Lignocellulosic Corn Agro-Waste into Cellulose Derivative and Its Potential Application as Pharmaceutical Excipient. Processes, 2020, 8, 711.	1.3	23
48	Machine Learning and Bioinformatics Models to Identify Pathways that Mediate Influences of Welding Fumes on Cancer Progression. Scientific Reports, 2020, 10, 2795.	1.6	23
49	Photolytic and photocatalytic degradation of organic UV filters in contaminated water. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 85-92.	3.2	20
50	Metals extraction processes from electronic waste: constraints and opportunities. Environmental Science and Pollution Research, 2022, 29, 32651-32669.	2.7	19
51	Role of microporosity and surface functionality of activated carbon in methylene blue dye removal from water. Korean Journal of Chemical Engineering, 2013, 30, 2228-2234.	1.2	18
52	Machine learning and network-based models to identify genetic risk factors to the progression and survival of colorectal cancer. Computers in Biology and Medicine, 2021, 135, 104539.	3.9	18
53	Estimation of uncertainty in the sampling and analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons from contaminated soil in Brighton, UK. Science of the Total Environment, 2014, 497-498, 163-171.	3.9	17
54	Advances in As contamination and adsorption in soil for effective management. Journal of Environmental Management, 2021, 296, 113274.	3.8	16

#	Article	IF	CITATIONS
55	Chemical and microbiological risk assessment of urban river water quality in Vietnam. Environmental Geochemistry and Health, 2019, 41, 2559-2575.	1.8	15
56	Struvite production using membrane-bioreactor wastewater effluent and seawater. Desalination, 2018, 444, 1-5.	4.0	12
57	Identifying molecular insight of synergistic complexities for SARS-CoV-2 infection with pre-existing type 2 diabetes. Computers in Biology and Medicine, 2021, 136, 104668.	3.9	12
58	Maximum allowable values of the heavy metals in recycled water for household laundry. Science of the Total Environment, 2013, 452-453, 427-432.	3.9	11
59	Adsorption and desorption behavior of arsenite and arsenate at river sediment-water interface. Journal of Environmental Management, 2022, 317, 115497.	3.8	11
60	Production and Characterization of Bio-oil from Bio-mass by Circulating Fluidized Bed Pyrolysis Reactor. Bangladesh Journal of Scientific and Industrial Research, 2011, 46, 313-322.	0.1	7
61	Photocatalysis of 17α-ethynylestradiol and estriol in water using engineered immersible optical fibres and light emitting diodes. Journal of Water Process Engineering, 2020, 33, 101075.	2.6	7
62	Super-Adsorptive Biodegradable Hydrogel from Simply Treated Sugarcane Bagasse. Gels, 2022, 8, 177.	2.1	5
63	Methods for the analysis of micro-pollutants. , 2020, , 63-86.		2
64	Microorganisms, infection and the role of medical textiles. , 2021, , 45-85.		2
65	Effects of heating rate and heating up time to central biomass particles for bio-oil production. Bangladesh Journal of Scientific and Industrial Research, 2016, 51, 13-22.	0.1	1
66	Sustainable management and treatment technologies for micro-pollutants in wastewater. , 2020, , 1-22.		1
67	Ultraviolet-blocking protective textiles. , 2022, , 395-444.		Ο