
Daniel Goldowitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
2	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	6.0	517
3	An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature Biotechnology, 2017, 35, 872-878.	9.4	456
4	VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P2 in yeast and mouse. EMBO Journal, 2008, 27, 3221-3234.	3.5	221
5	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	2.4	195
6	Wild-Type Huntingtin Plays a Role in Brain Development and Neuronal Survival. Molecular Neurobiology, 2003, 28, 259-276.	1.9	134
7	Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Frontiers in Neural Circuits, 2020, 14, 611841.	1.4	95
8	Cerebellar modulation of frontal cortex dopamine efflux in mice: Relevance to autism and schizophrenia. Synapse, 2008, 62, 544-550.	0.6	86
9	Performance of normal and neurological mutant mice on radial arm maze and active avoidance tasks. Behavioral and Neural Biology, 1986, 46, 216-226.	2.3	82
10	Implementing Large-Scale ENU Mutagenesis Screens in North America. Genetica, 2004, 122, 51-64.	0.5	81
11	A regulatory toolbox of MiniPromoters to drive selective expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16589-16594.	3.3	74
12	Systems genetics of intravenous cocaine self-administration in the BXD recombinant inbred mouse panel. Psychopharmacology, 2016, 233, 701-714.	1.5	70
13	rAAV-compatible MiniPromoters for restricted expression in the brain and eye. Molecular Brain, 2016, 9, 52.	1.3	69
14	Neurons Lacking Huntingtin Differentially Colonize Brain and Survive in Chimeric Mice. Journal of Neuroscience, 2001, 21, 7608-7619.	1.7	62
15	Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiology of Learning and Memory, 2010, 94, 220-228.	1.0	52
16	Fetal Alcohol Spectrum Disorders: Gene-Environment Interactions, Predictive Biomarkers, and the Relationship Between Structural Alterations in the Brain and Functional Outcomes. Seminars in Pediatric Neurology, 2011, 18, 49-55.	1.0	50
17	<i>>Wls</i> Provides a New Compartmental View of the Rhombic Lip in Mouse Cerebellar Development. Journal of Neuroscience, 2014, 34, 12527-12537.	1.7	50
18	Preliminary analysis of the mouse cerebellum proteome. Molecular Brain Research, 2002, 98, 135-140.	2.5	47

DANIEL GOLDOWITZ

#	Article	IF	CITATIONS
19	A Novel and Multivalent Role of Pax6 in Cerebellar Development. Journal of Neuroscience, 2016, 36, 9057-9069.	1.7	47
20	Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors. Molecular Therapy - Methods and Clinical Development, 2014, 1, 5.	1.8	44
21	Adverse Behavioral Changes in Adult Mice Following Neonatal Repeated Exposure to Pain and Sucrose. Frontiers in Psychology, 2018, 9, 2394.	1.1	43
22	HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. ELife, 2017, 6, .	2.8	41
23	R6/2 neurons with intranuclear inclusions survive for prolonged periods in the brains of chimeric mice. Journal of Comparative Neurology, 2007, 505, 603-629.	0.9	34
24	Effects of stimulus salience on touchscreen serial reversal learning in a mouse model of fragile X syndrome. Behavioural Brain Research, 2013, 252, 126-135.	1.2	31
25	Identification of a set of genes showing regionally enriched expression in the mouse brain. BMC Neuroscience, 2008, 9, 66.	0.8	25
26	A deletion causing spontaneous fracture identified from a candidate region of mouse Chromosome 14. Mammalian Genome, 2005, 16, 20-31.	1.0	23
27	The Tennessee Mouse Genome Consortium: Identification of ocular mutants. Visual Neuroscience, 2005, 22, 595-604.	0.5	22
28	CbGRiTS: Cerebellar gene regulation in time and space. Developmental Biology, 2015, 397, 18-30.	0.9	22
29	Dab2IP GTPase Activating Protein Regulates Dendrite Development and Synapse Number in Cerebellum. PLoS ONE, 2013, 8, e53635.	1.1	18
30	Wls expression in the rhombic lip orchestrates the embryonic development of the mouse cerebellum. Neuroscience, 2017, 354, 30-42.	1.1	18
31	The effect of hemorrhage on the development of the postnatal mouse cerebellum. Experimental Neurology, 2014, 252, 85-94.	2.0	17
32	Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics, 2019, 211, 1155-1177.	1.2	17
33	Inherited neuroaxonal dystrophy in dogs causing lethal, fetalâ€onset motor system dysfunction and cerebellar hypoplasia. Journal of Comparative Neurology, 2010, 518, 3771-3784.	0.9	16
34	Ethanol-induced hyperactivity is associated with hypodopaminergia in the 22-TNJ ENU-mutated mouse. Alcohol, 2009, 43, 421-431.	0.8	15
35	Genomeâ€wide microarray comparison reveals downstream genes of Pax6 in the developing mouse cerebellum. European Journal of Neuroscience, 2012, 36, 2888-2898.	1.2	15
36	The Expression of HDAC1 and HDAC2 During Cerebellar Cortical Development. Cerebellum, 2013, 12, 534-546.	1.4	15

DANIEL GOLDOWITZ

#	Article	IF	CITATIONS
37	Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice. Developmental Biology, 2007, 305, 430-438.	0.9	14
38	The genetic basis of adrenal gland weight and structure in BXD recombinant inbred mice. Mammalian Genome, 2011, 22, 209-234.	1.0	13
39	Enhanced Purkinje cell survival but compromised cerebellar function in targeted anti-apoptotic protein transgenic mice. Molecular and Cellular Neurosciences, 2005, 29, 202-221.	1.0	11
40	Screening for ENU-induced mutations in mice that result in aberrant ethanol-related phenotypes Behavioral Neuroscience, 2007, 121, 665-678.	0.6	11
41	Systemic inflammation combined with neonatal cerebellar haemorrhage aggravates long-term structural and functional outcomes in a mouse model. Brain, Behavior, and Immunity, 2017, 66, 257-276.	2.0	11
42	Identification of novel cerebellar developmental transcriptional regulators with motif activity analysis. BMC Genomics, 2019, 20, 718.	1.2	11
43	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	5.8	11
44	CAGE-defined promoter regions of the genes implicated in Rett Syndrome. BMC Genomics, 2014, 15, 1177.	1.2	10
45	Identification of a Chr 11 quantitative trait locus that modulates proliferation in the rostral migratory stream of the adult mouse brain. European Journal of Neuroscience, 2010, 32, 523-537.	1.2	9
46	Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development. PLoS ONE, 2015, 10, e0134390.	1.1	9
47	The Renal Glomerulus and Vasculature in â€~Aggregation' Chimeric Mice. Nephron, 2002, 90, 267-272.	0.9	8
48	Using a mouse model to gain insights into developmental coordination disorder. Genes, Brain and Behavior, 2020, 19, e12647.	1.1	6
49	Phenotype screening for genetically determined age-onset disorders and increased longevity in ENU-mutagenized mice. Age, 2005, 27, 75-90.	3.0	5
50	Navigating the Functional Landscape of Transcription Factors via Non-Negative Tensor Factorization Analysis of MEDLINE Abstracts. Frontiers in Bioengineering and Biotechnology, 2017, 5, 48.	2.0	5
51	Early life risk and resiliency factors and their influences on developmental outcomes and disease pathways: a rapid evidence review of systematic reviews and meta-analyses. Journal of Developmental Origins of Health and Disease, 2021, 12, 357-372.	0.7	5
52	Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice. BMC Biology, 2013, 11, 106.	1.7	4
53	Identification of genetic loci that modulate cell proliferation in the adult rostral migratory stream using the expanded panel of BXD mice. BMC Genomics, 2014, 15, 206.	1.2	4
54	The NeuroDevNet Vision. Seminars in Pediatric Neurology, 2011, 18, 2-4.	1.0	2

DANIEL GOLDOWITZ

#	Article	IF	CITATIONS
55	Effects of age and strain on cell proliferation in the mouse rostral migratory stream. Neurobiology of Aging, 2013, 34, 1712.e15-1712.e21.	1.5	2
56	ENU induced single mutation locus on chr 16 leads to high-frequency hearing loss in mice. Genes and Genetic Systems, 2009, 84, 219-224.	0.2	1
57	Decreased temporal variability in hippocampal theta rhythms of cats administered methylphenidate. Behavioral Biology, 1975, 13, 497-503.	2.3	Ο
58	NeuroDevNet: A Canada Network of Centres of Excellence—To Realize a Vision by Effective Operations and Collaborative Mechanisms. Seminars in Pediatric Neurology, 2011, 18, 5-9.	1.0	0
59	Excessive activation of tissue plasminogen activator makes a mouse nervous. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10882-10883.	3.3	0