Thomas E Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458417/publications.pdf Version: 2024-02-01

THOMAS FLIOVE

#	Article	IF	CITATIONS
1	The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 2015, 525, 56-61.	13.7	835
2	Hrs Regulates Endosome Membrane Invagination and Tyrosine Kinase Receptor Signaling in Drosophila. Cell, 2002, 108, 261-269.	13.5	412
3	Endophilin Mutations Block Clathrin-Mediated Endocytosis but Not Neurotransmitter Release. Cell, 2002, 109, 101-112.	13.5	305
4	Stress Granule Assembly Disrupts Nucleocytoplasmic Transport. Cell, 2018, 173, 958-971.e17.	13.5	303
5	Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron, 2017, 94, 93-107.e6.	3.8	274
6	Antibody levels correlate with creatine kinase levels and strength in anti–3â€hydroxyâ€3â€methylglutarylâ€coenzyme A reductase–associated autoimmune myopathy. Arthritis Rheumatism, 2012, 64, 4087-4093.	and7	201
7	When cell biology meets development: endocytic regulation of signaling pathways. Genes and Development, 2002, 16, 1314-1336.	2.7	194
8	Evaluation and construction of diagnostic criteria for inclusion body myositis. Neurology, 2014, 83, 426-433.	1.5	192
9	Syntaxin 1A Interacts with Multiple Exocytic Proteins to Regulate Neurotransmitter Release In Vivo. Neuron, 1999, 23, 593-605.	3.8	189
10	A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Human Molecular Genetics, 2011, 20, 2510-2523.	1.4	177
11	Crystal Structure of the VHS and FYVE Tandem Domains of Hrs, a Protein Involved in Membrane Trafficking and Signal Transduction. Cell, 2000, 100, 447-456.	13.5	175
12	TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle. Nature, 2018, 563, 508-513.	13.7	163
13	Neuropeptide Delivery to Synapses by Long-Range Vesicle Circulation and Sporadic Capture. Cell, 2012, 148, 1029-1038.	13.5	137
14	Thigh muscle MRI in immune-mediated necrotising myopathy: extensive oedema, early muscle damage and role of anti-SRP autoantibodies as a marker of severity. Annals of the Rheumatic Diseases, 2017, 76, 681-687.	0.5	132
15	WIDE AWAKE Mediates the Circadian Timing of Sleep Onset. Neuron, 2014, 82, 151-166.	3.8	128
16	Increased frequency of DRB1*11:01 in anti–hydroxymethylglutaryl oenzyme A reductase–associated autoimmune myopathy. Arthritis Care and Research, 2012, 64, 1233-1237.	1.5	126
17	The p150Glued CAP-Gly Domain Regulates Initiation of Retrograde Transport at Synaptic Termini. Neuron, 2012, 74, 344-360.	3.8	126
18	Top3Î ² is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nature Neuroscience, 2013, 16, 1238-1247.	7.1	124

#	Article	IF	CITATIONS
19	Peripheral Neuropathy. Neuroimaging Clinics of North America, 2014, 24, 49-65.	0.5	122
20	Flightless flies: <i>Drosophila</i> models of neuromuscular disease. Annals of the New York Academy of Sciences, 2010, 1184, e1-20.	1.8	120
21	Identification of distinctive interferon gene signatures in different types of myositis. Neurology, 2019, 93, e1193-e1204.	1.5	115
22	A Genome-Wide Search for Synaptic Vesicle Cycle Proteins in Drosophila. Neuron, 2000, 26, 45-50.	3.8	105
23	p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell, 2021, 184, 689-708.e20.	13.5	104
24	Synaptotagmin 2 Mutations Cause an Autosomal-Dominant Form of Lambert-Eaton Myasthenic Syndrome and Nonprogressive Motor Neuropathy. American Journal of Human Genetics, 2014, 95, 332-339.	2.6	96
25	Safety and efficacy of intravenous bimagrumab in inclusion body myositis (RESILIENT): a randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurology, The, 2019, 18, 834-844.	4.9	91
26	Cytosolic 5′â€Nucleotidase 1A As a Target of Circulating Autoantibodies in Autoimmune Diseases. Arthritis Care and Research, 2016, 68, 66-71.	1.5	89
27	Genotype–phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the <i>MPZ</i> gene. Brain, 2015, 138, 3180-3192.	3.7	80
28	Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis. Annals of the Rheumatic Diseases, 2020, 79, 1234-1242.	0.5	80
29	A TRPV Channel in Drosophila Motor Neurons Regulates Presynaptic Resting Ca2+ Levels, Synapse Growth, and Synaptic Transmission. Neuron, 2014, 84, 764-777.	3.8	68
30	More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology, 2017, 56, kew470.	0.9	67
31	Teleneurology during the COVID-19 pandemic: A step forward in modernizing medical care. Journal of the Neurological Sciences, 2020, 414, 116930.	0.3	67
32	Tdp-43 cryptic exons are highly variable between cell types. Molecular Neurodegeneration, 2017, 12, 13.	4.4	63
33	Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Annals of Neurology, 2017, 81, 227-239.	2.8	59
34	Spectrum of Muscle Histopathologic Findings in Fortyâ€īwo Scleroderma Patients With Weakness. Arthritis Care and Research, 2015, 67, 1416-1425.	1.5	56
35	Sciatic nerve tumor and tumor-like lesions—uncommon pathologies. Skeletal Radiology, 2012, 41, 763-774.	1.2	55
36	Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. Journal of Nutritional Biochemistry, 2019, 64, 170-181.	1.9	52

#	Article	IF	CITATIONS
37	Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathologica Communications, 2017, 5, 24.	2.4	50
38	TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. ELife, 2020, 9, .	2.8	48
39	Targeted Mutations in the Syntaxin H3 Domain Specifically Disrupt SNARE Complex Function in Synaptic Transmission. Journal of Neuroscience, 2001, 21, 9142-9150.	1.7	47
40	FIG4 regulates lysosome membrane homeostasis independent of phosphatase function. Human Molecular Genetics, 2016, 25, 681-692.	1.4	46
41	TRPV4 disrupts mitochondrial transport and causes axonal degeneration via a CaMKII-dependent elevation of intracellular Ca2+. Nature Communications, 2020, 11, 2679.	5.8	45
42	Mortality and Causes of Death in Patients with Sporadic Inclusion Body Myositis: Survey Study Based on the Clinical Experience of Specialists in Australia, Europe and the USA. Journal of Neuromuscular Diseases, 2016, 3, 67-75.	1.1	44
43	Statin-Induced Anti-HMGCR-Associated Myopathy. Journal of the American College of Cardiology, 2016, 68, 234-235.	1.2	44
44	The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction. Human Molecular Genetics, 2014, 23, 3810-3822.	1.4	42
45	Overlapping features of polymyositis and inclusion body myositis in HIV-infected patients. Neurology, 2017, 88, 1454-1460.	1.5	39
46	Natural history of Charcot-Marie-Tooth disease type 2A: a large international multicentre study. Brain, 2020, 143, 3589-3602.	3.7	39
47	Myositis-specific autoantibodies are specific for myositis compared to genetic muscle disease. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e172.	3.1	38
48	Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. Nature Neuroscience, 2021, 24, 1673-1685.	7.1	38
49	Whole-body MR neurography: Prospective feasibility study in polyneuropathy and Charcot-Marie-Tooth disease. Journal of Magnetic Resonance Imaging, 2016, 44, 1513-1521.	1.9	34
50	Variation in <i>SIPA1L2</i> is correlated with phenotype modification in Charcot– Marie– Tooth disease type 1A. Annals of Neurology, 2019, 85, 316-330.	2.8	33
51	Cbl-associated protein regulates assembly and function of two tension-sensing structures in <i>Drosophila</i> . Development (Cambridge), 2013, 140, 627-638.	1.2	31
52	Myositis Autoantigen Expression Correlates With Muscle Regeneration but Not Autoantibody Specificity. Arthritis and Rheumatology, 2019, 71, 1371-1376.	2.9	29
53	Nucleocytoplasmic transport in <i>C9orf72-</i> mediated ALS/FTD. Nucleus, 2016, 7, 132-137.	0.6	27
54	An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. IScience, 2021, 24, 103221.	1.9	27

#	Article	IF	CITATIONS
55	Loss of TDP-43 function and rimmed vacuoles persist after T cell depletion in a xenograft model of sporadic inclusion body myositis. Science Translational Medicine, 2022, 14, eabi9196.	5.8	27
56	Neuropathy-causing TRPV4 mutations disrupt TRPV4-RhoA interactions and impair neurite extension. Nature Communications, 2021, 12, 1444.	5.8	25
57	Performance of the 2017 European Alliance of Associations for Rheumatology/American College of Rheumatology Classification Criteria for Idiopathic Inflammatory Myopathies in Patients With <scp>Myositisâ€5pecific</scp> Autoantibodies. Arthritis and Rheumatology, 2022, 74, 508-517.	2.9	24
58	Exploration of the MUC5B promoter variant and ILD risk in patients with autoimmune myositis. Respiratory Medicine, 2017, 130, 52-54.	1.3	22
59	Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nature Communications, 2022, 13, 2306.	5.8	20
60	Modifier Gene Candidates in Charcot-Marie-Tooth Disease Type 1A: A Case-Only Genome-Wide Association Study. Journal of Neuromuscular Diseases, 2019, 6, 201-211.	1.1	19
61	The ROP-Syntaxin interaction inhibits neurotransmitter release. European Journal of Cell Biology, 2001, 80, 196-199.	1.6	17
62	New Developments in the Genetics of Inclusion Body Myositis. Current Rheumatology Reports, 2018, 20, 26.	2.1	17
63	FUS causes synaptic hyperexcitability in Drosophila dendritic arborization neurons. Brain Research, 2018, 1693, 55-66.	1.1	16
64	Novel therapeutic approaches for inclusion body myositis. Current Opinion in Rheumatology, 2010, 22, 658-664.	2.0	15
65	Assessing non-Mendelian inheritance in inherited axonopathies. Genetics in Medicine, 2020, 22, 2114-2119.	1.1	15
66	Risk Factors for Infection and Health Impacts of the Coronavirus Disease 2019 (COVID-19) Pandemic in People With Autoimmune Diseases. Clinical Infectious Diseases, 2022, 74, 427-436.	2.9	15
67	Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Research, 2018, 1693, 109-120.	1.1	14
68	UPF1 reduces C9orf72 HRE-induced neurotoxicity in the absence of nonsense-mediated decay dysfunction. Cell Reports, 2021, 34, 108925.	2.9	14
69	The phenotype of myositis patients with anti-Ku autoantibodies. Seminars in Arthritis and Rheumatism, 2021, 51, 728-734.	1.6	13
70	Muscle endurance deficits in myositis patients despite normal manual muscle testing scores. Muscle and Nerve, 2019, 59, 70-75.	1.0	12
71	Ultra-efficient sequencing of T Cell receptor repertoires reveals shared responses in muscle from patients with Myositis. EBioMedicine, 2020, 59, 102972.	2.7	11
72	Laing distal myopathy pathologically resembling inclusion body myositis. Annals of Clinical and Translational Neurology, 2014, 1, 1053-1058.	1.7	10

#	Article	IF	CITATIONS
73	Human pluripotent stem cell-derived myogenic progenitors undergo maturation to quiescent satellite cells upon engraftment. Cell Stem Cell, 2022, 29, 610-619.e5.	5.2	10
74	Improving the efficacy of exome sequencing at a quaternary care referral centre: novel mutations, clinical presentations and diagnostic challenges in rare neurogenetic diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1186-1196.	0.9	9
75	Muscle Transcriptomics Shows Overexpression of Cadherin 1 in Inclusion Body Myositis. Annals of Neurology, 2022, 91, 317-328.	2.8	9
76	Accumulation of autophagosome cargo protein p62 is common in idiopathic inflammatory myopathies. Clinical and Experimental Rheumatology, 2021, 39, 351-356.	0.4	8
77	Axonal transport disruption in peripheral nerve disease. Journal of the Peripheral Nervous System, 2012, 17, 46-51.	1.4	6
78	A Case of Morvan Syndrome Mimicking Amyotrophic Lateral Sclerosis With Frontotemporal Dementia. Journal of Clinical Neuromuscular Disease, 2016, 17, 207-211.	0.3	6
79	<scp>Antiâ€Cortactin</scp> Autoantibodies Are Associated With Key Clinical Features in Adult Myositis But Are Rarely Present in Juvenile Myositis. Arthritis and Rheumatology, 2022, 74, 358-364.	2.9	6
80	pRIMing synaptic vesicles for fusion. Nature Neuroscience, 2001, 4, 965-966.	7.1	5
81	Drosophila models of neurologic disease. Experimental Neurology, 2015, 274, 1-3.	2.0	5
82	Secondary Causes of Myositis. Current Treatment Options in Neurology, 2020, 22, 38.	0.7	5
83	Internal grant review to increase grant funding for junior investigators. Annals of Neurology, 2017, 82, 497-502.	2.8	4
84	Treatment and Management of Hereditary Neuropathies. , 2011, , 191-213.		2
85	Performing Human Skeletal Muscle Xenografts in Immunodeficient Mice. Journal of Visualized Experiments, 2019, , .	0.2	2
86	Prevalence of avascular necrosis in idiopathic inflammatory myopathies: a single-centre experience. Rheumatology, 2022, 61, 936-942.	0.9	2
87	Accumulation of autophagosome cargo protein p62 is common in idiopathic inflammatory myopathies. Clinical and Experimental Rheumatology, 2021, 39, 351-356.	0.4	2
88	How can an understanding of the C9orf72 gene translate into amyotrophic lateral sclerosis therapies?. Expert Review of Neurotherapeutics, 2019, 19, 895-897.	1.4	1
89	Hereditary Channelopathies Caused by TRPV4 Mutations. , 2014, , 413-440.		1
90	Fifteenâ€year longitudinal followâ€up of a patient with severe earlyâ€onset Charcotâ€Marieâ€Tooth disease type 2A. Muscle and Nerve, 2018, 57, E126-E128.	1.0	0