Thomas M Maynard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/945836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cerebrospinal Fluid Provides a Proliferative Niche for Neural Progenitor Cells. Neuron, 2011, 69, 893-905.	8.1	543
2	Neural Development, Cell-Cell Signaling, and the "Two-Hit" Hypothesis of Schizophrenia. Schizophrenia Bulletin, 2001, 27, 457-476.	4.3	323
3	Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Molecular Psychiatry, 2017, 22, 936-943.	7.9	280
4	NUMB Localizes in the Basal Cortex of Mitotic Avian Neuroepithelial Cells and Modulates Neuronal Differentiation by Binding to NOTCH-1. Neuron, 1999, 23, 71-81.	8.1	236
5	Exome Sequencing and Functional Validation in Zebrafish Identify GTDC2 Mutations as a Cause of Walker-Warburg Syndrome. American Journal of Human Genetics, 2012, 91, 541-547.	6.2	167
6	Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16434-16445.	7.1	149
7	A comprehensive analysis of 22q11 gene expression in the developing and adult brain. Proceedings of the United States of America, 2003, 100, 14433-14438.	7.1	137
8	Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron, 2019, 102, 1127-1142.e3.	8.1	108
9	Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes. Molecular and Cellular Neurosciences, 2008, 39, 439-451.	2.2	106
10	Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome. Proceedings of the United States of America, 2012, 109, 18601-18606.	7.1	94
11	Proliferative and transcriptional identity of distinct classes of neural precursors in the mammalian olfactory epithelium. Development (Cambridge), 2010, 137, 2471-2481.	2.5	85
12	Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Progress in Neurobiology, 2015, 130, 1-28.	5.7	82
13	High-resolution mapping of the Gli3 mutation Extra-toesJ reveals a 51.5-kb deletion. Mammalian Genome, 2002, 13, 58-61.	2.2	80
14	Progressive Differentiation and Instructive Capacities of Amniotic Fluid and Cerebrospinal Fluid Proteomes following Neural Tube Closure. Developmental Cell, 2015, 35, 789-802.	7.0	77
15	Retinoic acid signaling at sites of plasticity in the mature central nervous system. Journal of Comparative Neurology, 2002, 452, 228-241.	1.6	71
16	Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes. International Journal of Developmental Neuroscience, 2011, 29, 283-294.	1.6	57
17	Mesenchymal/epithelial regulation of retinoic acid signaling in the olfactory placode. Developmental Biology, 2003, 261, 82-98.	2.0	56
18	Glial domains and axonal reordering in the chiasmatic region of the developing ferret. Journal of Comparative Neurology, 1994, 349, 303-324.	1.6	49

#	Article	IF	CITATIONS
19	Cognitive Ability is Associated with Altered Medial Frontal Cortical Circuits in the LgDel Mouse Model of 22q11.2DS. Cerebral Cortex, 2015, 25, 1143-1151.	2.9	48
20	<i>Ranbp1</i> , Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation. Cerebral Cortex, 2015, 25, 3977-3993.	2.9	44
21	Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge/22q11 Deletion Syndrome. DMM Disease Models and Mechanisms, 2014, 7, 245-57.	2.4	42
22	22q11 DS: genomic mechanisms and gene function in DiGeorge/velocardiofacial syndrome. International Journal of Developmental Neuroscience, 2002, 20, 407-419.	1.6	41
23	22q11 Gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development. Human Molecular Genetics, 2013, 22, 300-312.	2.9	41
24	Hard to swallow: Developmental biological insights into pediatric dysphagia. Developmental Biology, 2016, 409, 329-342.	2.0	39
25	Gene dosage in the developing and adult brain in a mouse model of 22q11 deletion syndrome. Molecular and Cellular Neurosciences, 2006, 33, 412-428.	2.2	38
26	<i>Comt1</i> genotype and expression predicts anxiety and nociceptive sensitivity in inbred strains of mice. Genes, Brain and Behavior, 2010, 9, 933-946.	2.2	34
27	MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1. Frontiers in Molecular Neuroscience, 2016, 9, 20.	2.9	33
28	Functional Divergence of the Nuclear Receptor <i>NR2C1</i> as a Modulator of Pluripotentiality During Hominid Evolution. Genetics, 2016, 203, 905-922.	2.9	33
29	Developmental and degenerative features in a complicated spastic paraplegia. Annals of Neurology, 2010, 67, 516-525.	5.3	31
30	Hectd1 is required for development of the junctional zone of the placenta. Developmental Biology, 2014, 392, 368-380.	2.0	30
31	Suckling, Feeding, and Swallowing: Behaviors, Circuits, and Targets for Neurodevelopmental Pathology. Annual Review of Neuroscience, 2020, 43, 315-336.	10.7	26
32	Avian transitin expression mirrors glial cell fate restrictions during neural crest development. , 2000, 218, 150-159.		25
33	A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons. Developmental Biology, 2016, 415, 228-241.	2.0	24
34	RanBP1, a velocardiofacial/DiGeorge syndrome candidate gene, is expressed at sites of mesenchymal/epithelial induction. Mechanisms of Development, 2002, 111, 177-180.	1.7	23
35	Persistent Feeding and Swallowing Deficits in a Mouse Model of 22q11.2 Deletion Syndrome. Frontiers in Neurology, 2020, 11, 4.	2.4	22
36	Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. Developmental Dynamics, 2015, 244, 181-210.	1.8	20

THOMAS M MAYNARD

#	Article	IF	CITATIONS
37	Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. Genesis, 2016, 54, 334-349.	1.6	19
38	Specific mesenchymal/epithelial induction of olfactory receptor, vomeronasal, and gonadotropinâ€releasing hormone (GnRH) neurons. Developmental Dynamics, 2010, 239, 1723-1738.	1.8	18
39	Foxd4 is essential for establishing neural cell fate and for neuronal differentiation. Genesis, 2017, 55, e23031.	1.6	18
40	On becoming neural: what the embryo can tell us about differentiating neural stem cells. American Journal of Stem Cells, 2013, 2, 74-94.	0.4	17
41	Limited influence of olanzapine on adult forebrain neural precursors in vitro. Neuroscience, 2006, 140, 111-122.	2.3	15
42	Balancing Act: Maintaining Amino Acid Levels in the Autistic Brain. Neuron, 2017, 93, 476-479.	8.1	15
43	Development and implementation of a scalable and versatile test for COVID-19 diagnostics in rural communities. Nature Communications, 2021, 12, 4400.	12.8	9
44	Transcriptional dysregulation in developing trigeminal sensory neurons in the LgDel mouse model of DiGeorge 22q11.2 deletion syndrome. Human Molecular Genetics, 2020, 29, 1002-1017.	2.9	8
45	Selective disruption of trigeminal sensory neurogenesis and differentiation in a mouse model of 22q11.2 deletion syndrome. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	8
46	No evidence for parental imprinting of mouse 22q11 gene orthologs. Mammalian Genome, 2006, 17, 822-832.	2.2	7
47	Variations in maternal vitamin A intake modifies phenotypes in a mouse model of 22q11.2 deletion syndrome. Birth Defects Research, 2020, 112, 1194-1208.	1.5	7
48	Aberrant early growth of individual trigeminal sensory and motor axons in a series of mouse genetic models of 22q11.2 deletion syndrome. Human Molecular Genetics, 2020, 29, 3081-3093.	2.9	6
49	Testicular receptor 2, Nr2c1, is associated with stem cells in the developing olfactory epithelium and other cranial sensory and skeletal structures. Gene Expression Patterns, 2016, 20, 71-79.	0.8	4

50 22q11 Deletion Syndrome. , 2015, , 677-696.