
Claudia Malerba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/945810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wide bandgap CIGSe solar cells on transparent substrates above 10% efficiency. , 2021, , .		0
2	Thermoelectric properties of CZTS thin films: effect of Cu–Zn disorder. Physical Chemistry Chemical Physics, 2021, 23, 13148-13158.	1.3	15
3	Towards an ink-based method for the deposition of ZnxCd1-xS buffer layers in CZTS solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 2575-2582.	1.1	4
4	Rear Band gap Grading Strategies on Sn–Ge-Alloyed Kesterite Solar Cells. ACS Applied Energy Materials, 2020, 3, 10362-10375.	2.5	29
5	Over 10% Efficient Wide Bandgap CIGSe Solar Cells on Transparent Substrate with Na Predeposition Treatment. Solar Rrl, 2020, 4, 2000284.	3.1	8
6	Synthesis and Post-Annealing of Cu2ZnSnS4 Absorber Layers Based on Oleylamine/1-dodecanethiol. Materials, 2019, 12, 3320.	1.3	16
7	Fabrication of monolithic CZTS/Si tandem cells by development of the intermediate connection. Solar Energy, 2019, 190, 414-419.	2.9	33
8	Study and optimization of alternative MBEâ€deposited metallic precursors for highly efficient kesterite CZTSe:Ge solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 779-788.	4.4	12
9	Physical routes for the synthesis of kesterite. JPhys Energy, 2019, 1, 042003.	2.3	34
10	Control of composition and grain growth in Cu2ZnSnS4 thin films from nanoparticle inks. Thin Solid Films, 2019, 674, 12-21.	0.8	22
11	Insights into the Formation Pathways of Cu ₂ ZnSnSe ₄ Using Rapid Thermal Processes. ACS Applied Energy Materials, 2018, 1, 1981-1989.	2.5	16
12	Cation Disorder In Cu ₂ ZnSnS ₄ Thin Films: Effect On Solar Cell Performances. Solar Rrl, 2017, 1, 1700101.	3.1	34
13	Electronic structure of Ar+ ion-sputtered thin-film MoS2: A XPS and IPES study. Applied Surface Science, 2017, 392, 795-800.	3.1	31
14	Blistering in Cu 2 ZnSnS 4 thin films: correlation with residual stresses. Materials and Design, 2016, 108, 725-735.	3.3	28
15	Effect of the order-disorder transition on the optical properties of Cu2ZnSnS4. Applied Physics Letters, 2016, 108, .	1.5	53
16	Cu ₂ SnS ₃ based solar cell with 3% efficiency. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 35-39.	0.8	58
17	Chloride-based route for monodisperse Cu2ZnSnS4 nanoparticles preparation. Journal of Renewable and Sustainable Energy, 2015, 7, .	0.8	7
18	Combinatorial study of co-sputtered Cu <inf>2</inf> ZnSnS <inf>4</inf> thin-film stoichiometry for photovoltaic devices. , 2014, , .		3

Claudia Malerba

#	ARTICLE	IF	CITATIONS
19	Stoichiometry effect on Cu2ZnSnS4 thin films morphological and optical properties. Journal of Renewable and Sustainable Energy, 2014, 6, .	0.8	28
20	CZTS stoichiometry effects on the band gap energy. Journal of Alloys and Compounds, 2014, 582, 528-534.	2.8	146
21	Valence band offset at the CdS/Cu ₂ ZnSnS ₄ interface probed by x-ray photoelectron spectroscopy. Journal Physics D: Applied Physics, 2013, 46, 175101.	1.3	113
22	Nitrogen doped Cu2O: A possible material for intermediate band solar cells?. Solar Energy Materials and Solar Cells, 2012, 105, 192-195.	3.0	67
23	Fabrication of Cu2ZnSnS4 solar cells by sulfurization of evaporated precursors. Energy Procedia, 2011, 10, 187-191.	1.8	44
24	Absorption coefficient of bulk and thin film Cu2O. Solar Energy Materials and Solar Cells, 2011, 95, 2848-2854.	3.0	195
25	Structural properties of RF-magnetron sputtered Cu2O thin films. Thin Solid Films, 2011, 520, 280-286.	0.8	25
26	Chlorine doping of Cu2O. Solar Energy Materials and Solar Cells, 2010, 94, 1947-1952.	3.0	51
27	Intrinsic defects and metastability effects in Cu2O. Thin Solid Films, 2009, 517, 2469-2472.	0.8	39
28	KSEMAW: an open source software for the analysis ofspectrophotometric, ellipsometric andphotothermal deflection spectroscopy measurements. Open Research Europe, 0, 1, 95.	2.0	1