
Patricia Mendonca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9458045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aqueous RDRP in the Presence of Cu ⁰ : The Exceptional Activity of Cu ^I Confirms the SARA ATRP Mechanism. Macromolecules, 2014, 47, 560-570.	2.2	187
2	Recent Developments in Antimicrobial Polymers: A Review. Materials, 2016, 9, 599.	1.3	153
3	Temperature and pH responsive polymers based on chitosan: Applications and new graft copolymerization strategies based on living radical polymerization. Carbohydrate Polymers, 2010, 80, 618-630.	5.1	112
4	Inorganic Sulfites: Efficient Reducing Agents and Supplemental Activators for Atom Transfer Radical Polymerization. ACS Macro Letters, 2012, 1, 1308-1311.	2.3	95
5	Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans. ChemSusChem, 2018, 11, 753-762.	3.6	75
6	Copperâ€Mediated Controlled/"Living―Radical Polymerization in Polar Solvents: Insights into Some Relevant Mechanistic Aspects. Chemistry - A European Journal, 2012, 18, 4607-4612.	1.7	64
7	Reversible Addition–Fragmentation Chain Transfer Polymerization of Vinyl Chloride. Macromolecules, 2012, 45, 2200-2208.	2.2	61
8	Ambient temperature rapid ATRP of methyl acrylate, methyl methacrylate and styrene in polar solvents with mixed transition metal catalyst system. European Polymer Journal, 2011, 47, 1460-1466.	2.6	60
9	Tailored design of renewable copolymers based on poly(1,4-butylene 2,5-furandicarboxylate) and poly(ethylene glycol) with refined thermal properties. Polymer Chemistry, 2018, 9, 722-731.	1.9	49
10	Synthesis of cationic poly((3-acrylamidopropyl)trimethylammonium chloride) by SARA ATRP in ecofriendly solvent mixtures. Polymer Chemistry, 2014, 5, 5829-5836.	1.9	41
11	Straightforward ARGET ATRP for the Synthesis of Primary Amine Polymethacrylate with Improved Chain-End Functionality under Mild Reaction Conditions. Macromolecules, 2014, 47, 4615-4621.	2.2	39
12	Increasing the Antimicrobial Activity of Amphiphilic Cationic Copolymers by the Facile Synthesis of High Molecular Weight Stars by Supplemental Activator and Reducing Agent Atom Transfer Radical Polymerization. Biomacromolecules, 2019, 20, 1146-1156.	2.6	38
13	Sulfolane: an Efficient and Universal Solvent for Copper-Mediated Atom Transfer Radical (co)Polymerization of Acrylates, Methacrylates, Styrene, and Vinyl Chloride. ACS Macro Letters, 2014, 3, 858-861.	2.3	37
14	Accelerated Ambientâ€īemperature ATRP of Methyl Acrylate in Alcohol–Water Solutions with a Mixed Transitionâ€Metal Catalyst System. Macromolecular Chemistry and Physics, 2012, 213, 1677-1687.	1.1	34
15	Nitroxide-Mediated Polymerization of Vinyl Chloride at Low Temperature: Kinetic and Computational Studies. Macromolecules, 2016, 49, 490-498.	2.2	34
16	Polymeric bile acid sequestrants—Synthesis using conventional methods and new approaches based on "controlledâ€fliving radical polymerization. Progress in Polymer Science, 2013, 38, 445-461.	11.8	33
17	Getting faster: low temperature copper-mediated SARA ATRP of methacrylates, acrylates, styrene and vinyl chloride in polar media using sulfolane/water mixtures. RSC Advances, 2016, 6, 9598-9603.	1.7	33
18	Thiourea Dioxide As a Green and Affordable Reducing Agent for the ARGET ATRP of Acrylates, Methacrylates, Styrene, Acrylonitrile, and Vinyl Chloride. ACS Macro Letters, 2019, 8, 315-319.	2.3	31

#	Article	IF	CITATIONS
19	Ambient Temperature Transition-Metal-Free Dissociative Electron Transfer Reversible Addition–Fragmentation Chain Transfer Polymerization (DET-RAFT) of Methacrylates, Acrylates, and Styrene. Macromolecules, 2016, 49, 1597-1604.	2.2	28
20	Facile Synthesis of Wellâ€Defined Telechelic Alkyneâ€Terminated Polystyrene in Polar Media Using ATRP With Mixed Fe/Cu Transition Metal Catalyst. Macromolecular Chemistry and Physics, 2013, 214, 76-84.	1.1	27
21	Cyclopentyl methyl ether: A new green coâ€solvent for supplemental activator and reducing agent atom transfer radical polymerization. Journal of Polymer Science Part A, 2015, 53, 2722-2729.	2.5	27
22	Deep eutectic solvents (DES): Excellent green solvents for rapid SARA ATRP of biorelevant hydrophilic monomers at ambient temperature. Polymer, 2017, 132, 114-121.	1.8	27
23	Synergistic Effect of 1-Butyl-3-methylimidazolium Hexafluorophosphate and DMSO in the SARA ATRP at Room Temperature Affording Very Fast Reactions and Polymers with Very Low Dispersity. ACS Macro Letters, 2014, 3, 544-547.	2.3	26
24	Mechanism of supplemental activator and reducing agent atom transfer radical polymerization mediated by inorganic sulfites: experimental measurements and kinetic simulations. Polymer Chemistry, 2017, 8, 6506-6519.	1.9	25
25	Ambient Temperature "Flash―SARA ATRP of Methyl Acrylate in Water/Ionic Liquid/Glycol Mixtures. Macromolecules, 2015, 48, 6810-6815.	2.2	24
26	Amphiphilic wellâ€defined degradable star block copolymers by combination of ringâ€opening polymerization and atom transfer radical polymerization: Synthesis and application as drug delivery carriers. Journal of Polymer Science, 2021, 59, 211-229.	2.0	21
27	Pushing the limits of robust and eco-friendly ATRP processes: untreated water as the solvent. Polymer Chemistry, 2019, 10, 938-944.	1.9	18
28	Synthesis of high glass transition temperature copolymers based on poly(vinyl chloride) via single electron transfer—Degenerative chain transfer mediated living radical polymerization (SETâ€DTLRP) of vinyl chloride in water. Journal of Polymer Science Part A, 2009, 47, 7021-7031.	2.5	17
29	Eutectic mixtures as a green alternative for efficient catalyst recycling in atom transfer radical polymerizations. Journal of Polymer Science Part A, 2017, 55, 371-381.	2.5	17
30	Poly(ethylene glycol)- <i>block</i> -poly(2-aminoethyl methacrylate hydrochloride)-Based Polyplexes as Serum-Tolerant Nanosystems for Enhanced Gene Delivery. Molecular Pharmaceutics, 2019, 16, 2129-2141.	2.3	16
31	Liquid salts as eco-friendly solvents for atom transfer radical polymerization: a review. Polymer Chemistry, 2019, 10, 4904-4913.	1.9	15
32	Light-Activated Antimicrobial Surfaces Using Industrial Varnish Formulations to Mitigate the Incidence of Nosocomial Infections. ACS Applied Materials & Interfaces, 2021, 13, 7567-7579.	4.0	15
33	Thermal characterization of poly(vinyl chloride) samples prepared by living radical polymerization: Comparison with poly(vinyl chloride) prepared by free radical polymerization. Journal of Applied Polymer Science, 2008, 109, 2729-2736.	1.3	14
34	Synthesis of tailor-made bile acid sequestrants by supplemental activator and reducing agent atom transfer radical polymerization. RSC Advances, 2016, 6, 52143-52153.	1.7	13
35	Efficient RAFT polymerization of N-(3-aminopropyl)methacrylamide hydrochloride using unprotected "clickable―chain transfer agents. Reactive and Functional Polymers, 2014, 81, 1-7.	2.0	12

 $_{36}$ Efficient dispersion of TiO2 in water-based paint formulation using well-defined poly[oligo(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{10}^{50}$

PATRICIA MENDONCA

#	Article	IF	CITATIONS
37	Guanidine as inexpensive dual function ligand and reducing agent for ATRP of methacrylates. Polymer Chemistry, 2019, 10, 4944-4953.	1.9	9
38	Co-Polymers based on Poly(1,4-butylene 2,5-furandicarboxylate) and Poly(propylene oxide) with Tuneable Thermal Properties: Synthesis and Characterization. Materials, 2019, 12, 328.	1.3	9
39	Selfâ€degassing SARA ATRP mediated by Na ₂ S ₂ O ₄ with no external additives. Journal of Polymer Science, 2020, 58, 145-153.	2.0	8
40	Homogeneous polymerization of hydrophobic monomers in a bio-based dl-menthol/1-tetradecanol eutectic mixture by ATRP and RAFT polymerization. Green Chemistry, 2020, 22, 6827-6835.	4.6	8
41	Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. Polymers, 2020, 12, 1268.	2.0	8
42	L-menthol and thymol eutectic mixture as a bio-based solvent for the "one-pot―synthesis of well-defined amphiphilic block copolymers by ATRP. Polymer, 2022, 242, 124586.	1.8	7
43	Increasing the Bile Acid Sequestration Performance of Cationic Hydrogels by Using an Advanced/Controlled Polymerization Technique. Pharmaceutical Research, 2017, 34, 1934-1943.	1.7	6
44	Expanding the use of affordable CuSO4·5H2O in ATRP techniques in homogeneous media. Polymer, 2022, 241, 124526.	1.8	4
45	Engineering silica-polymer hybrid nanosystems for dual drug and gene delivery. , 2022, , 212742.		4
46	Selfâ€degassing SARA ATRP mediated by Na 2 S 2 O 4 with no external additives. Journal of Polymer Science, 2020, 58, 145-153.	2.0	0