
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/94580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid-phase synthesis of butyl <i>tert</i> -butyl ether catalysed by ion-exchange resins: kinetic modelling through in-depth model discrimination. Reaction Chemistry and Engineering, 2021, 6, 165-172.	3.7	3
2	Assessment of ion exchange resins as catalysts for the direct transformation of fructose into butyl levulinate. Applied Catalysis A: General, 2021, 612, 117988.	4.3	22
3	Catalytic Hydroxyalkylation/Alkylation of 2-Methylfuran with Butanal to Form a Biodiesel Precursor Using Acidic Ion-Exchange Resins. Industrial & Engineering Chemistry Research, 2020, 59, 20676-20685.	3.7	9
4	Liquid-phase synthesis of butyl levulinate with simultaneous water removal catalyzed by acid ion exchange resins. Journal of Industrial and Engineering Chemistry, 2019, 78, 222-231.	5.8	13
5	Esterification of furfuryl alcohol to butyl levulinate over ion-exchange resins. Fuel, 2019, 257, 116010.	6.4	37
6	Systematic kinetic modeling of the propyl tert-butyl ether synthesis reaction. Chemical Engineering Journal, 2019, 356, 219-226.	12.7	5
7	Catalytic activity dependence on morphological properties of acidic ion-exchange resins for the simultaneous ETBE and TAEE liquid-phase synthesis. Reaction Chemistry and Engineering, 2018, 3, 195-205.	3.7	18
8	Role of ionâ€exchange resins as catalyst in the reactionâ€network of transformation of biomass into biofuels. Journal of Chemical Technology and Biotechnology, 2017, 92, 2775-2786.	3.2	34
9	Kinetics of the liquid phase dehydration of 1â€octanol to diâ€nâ€octyl ether on Amberlyst 70. AICHE Journal, 2017, 63, 3966-3978.	3.6	5
10	Dehydration of 1-octanol to di- n -octyl ether in liquid phase with simultaneous water removal over ion exchange resins: Effect of working-state morphologies. Applied Catalysis A: General, 2017, 545, 10-16.	4.3	3
11	Implementing the flipped classroom methodology to the subject "Applied computing" of the chemical engineering degree at the University of Barcelona. Journal of Technology and Science Education, 2017, 7, 119.	1.2	5
12	Kinetic study of 1â€butanol dehydration to diâ€ <i>n</i> â€butyl ether over Amberlyst 70. AICHE Journal, 2016, 62, 180-194.	3.6	8
13	Relevant properties for catalytic activity of sulfonic ion-exchange resins in etherification of isobutene with linear primary alcohols. Journal of Industrial and Engineering Chemistry, 2016, 42, 36-45.	5.8	14
14	Atomistic simulations of the structure of highly crosslinked sulfonated poly(styrene-co-divinylbenzene) ion exchange resins. Soft Matter, 2015, 11, 2251-2267.	2.7	10
15	Thermodynamic equilibrium for the dehydration of 1-butanol to di-n-butyl ether. Chemical Engineering Research and Design, 2015, 102, 186-195.	5.6	3
16	Catalytic Activity and Accessibility of Acidic Ion-Exchange Resins in Liquid Phase Etherification Reactions. Topics in Catalysis, 2015, 58, 919-932.	2.8	19
17	1-Butanol absorption in poly(styrene-divinylbenzene) ion exchange resins for catalysis. Soft Matter, 2015, 11, 9144-9149.	2.7	6
18	Green metrics analysis applied to the simultaneous liquid-phase etherification of isobutene and isoamylenes with ethanol over Amberlystâ"¢ 35. Green Processing and Synthesis, 2014, 3, .	3.4	1

#	Article	IF	CITATIONS
19	Kinetics of 1-hexanol etherification on Amberlyst 70. Chemical Engineering Journal, 2014, 246, 71-78.	12.7	17
20	Alkylation of toluene with 1-hexene over macroreticular ion-exchange resins. Applied Catalysis A: General, 2014, 485, 143-148.	4.3	7
21	Revamping of teaching–learning methodologies in laboratory subjects of the Chemical Engineering undergraduate degree of the University of Barcelona for their adjustment to the Bologna process. Education for Chemical Engineers, 2014, 9, e43-e49.	4.8	18
22	lon exchange resins as catalysts for the liquid-phase dehydration of 1-butanol to di-n-butyl ether. Applied Catalysis A: General, 2014, 482, 38-48.	4.3	33
23	Reliability of the synthesis of C10–C16 linear ethers from 1-alkanols over acidic ion-exchange resins. Biomass Conversion and Biorefinery, 2013, 3, 27-37.	4.6	7
24	Thermal stability and water effect on ion-exchange resins in ethyl octyl ether production at high temperature. Applied Catalysis A: General, 2013, 467, 301-309.	4.3	21
25	Chemical Equilibrium of the Liquid-Phase Dehydration of 1-Octanol to 1-(Octyloxy)octane. Journal of Chemical & Engineering Data, 2013, 58, 741-748.	1.9	6
26	Experimental Study of Chemical Equilibria in the Liquid-Phase Reaction between 1-Octanol and Ethanol to 1-Ethoxyoctane. Journal of Chemical & Engineering Data, 2013, 58, 2076-2082.	1.9	2
27	Influence of acid ion-exchange resins morphology in a swollen state on the synthesis of ethyl octyl ether from ethanol and 1-octanol. Journal of Catalysis, 2013, 304, 7-21.	6.2	27
28	Study of the oligomerization of 1-octene catalyzed by macroreticular ion-exchange resins. Chemical Engineering Journal, 2012, 207-208, 226-234.	12.7	25
29	Comparison between Ethanol and Diethyl Carbonate as Ethylating Agents for Ethyl Octyl Ether Synthesis over Acidic Ion-Exchange Resins. Industrial & Engineering Chemistry Research, 2012, 51, 16525-16530.	3.7	12
30	Synthesis of ethyl octyl ether from diethyl carbonate and 1-octanol over solid catalysts. A screening study. Applied Catalysis A: General, 2012, 413-414, 21-29.	4.3	19
31	Kinetics of 1-Pentanol Etherification without Water Removal. Industrial & Engineering Chemistry Research, 2011, 50, 7911-7919.	3.7	11
32	Liquid-phase dehydration of 1-octanol, 1-hexanol and 1-pentanol to linear symmetrical ethers over ion exchange resins. Applied Catalysis A: General, 2011, 396, 129-139.	4.3	49
33	Conversion of 1-hexanol to di-n-hexyl ether on acidic catalysts. Applied Catalysis A: General, 2010, 374, 41-47.	4.3	29
34	Isoamylene Trimerization in Liquid-Phase over Ion Exchange Resins and Zeolites. Industrial & Engineering Chemistry Research, 2010, 49, 3561-3570.	3.7	16
35	Liquid-phase dehydrocondensation of 1-pentanol to di-n-pentyl ether (DNPE) over medium and large pore acidic zeolites. Microporous and Mesoporous Materials, 2009, 117, 650-660.	4.4	18
36	Supported Nafion catalyst for 1-pentanol dehydration reaction in liquid phase. Chemical Engineering Journal, 2008, 145, 135-141.	12.7	14

#	Article	IF	CITATIONS
37	Study of the Chemical Equilibrium of the Liquid-Phase Dehydration of 1-Hexanol to Dihexyl Ether. Journal of Chemical & Engineering Data, 2008, 53, 2854-2860.	1.9	19
38	Zeolite catalysed dehydration of alcohol to linear ether. Studies in Surface Science and Catalysis, 2008, , 1115-1118.	1.5	3
39	Experimental Study of the Chemical Equilibria in the Liquid-Phase Dehydration of 1-Pentanol to Di- <i>n</i> -pentyl Ether. Industrial & Engineering Chemistry Research, 2007, 46, 6865-6872.	3.7	17
40	Liquid-phase synthesis of isopropyl tert-butyl ether by addition of 2-propanol to isobutene on the oversulfonated ion-exchange resin Amberlyst-35. Applied Catalysis A: General, 2007, 323, 38-50.	4.3	13
41	Kinetic modelling of the liquid-phase dimerization of isoamylenes on Amberlyst 35. Reactive and Functional Polymers, 2007, 67, 210-224.	4.1	34
42	Water effect on the kinetics of 1-pentanol dehydration to di-n-pentyl ether (DNPE) on amberlyst 70. Topics in Catalysis, 2007, 45, 181-186.	2.8	22
43	Dehydration of 1-pentanol to di-n-pentyl ether catalyzed by a microporous ion-exchange resin with simultaneous water removal. Applied Catalysis A: General, 2006, 308, 223-230.	4.3	15
44	Conversion, selectivity and kinetics of the liquid-phase dimerisation of isoamylenes in the presence of C1 to C5 alcohols catalysed by a macroporous ion-exchange resin. Journal of Catalysis, 2006, 238, 330-341.	6.2	26
45	Thermally stable ion-exchange resins as catalysts for the liquid-phase dehydration of 1-pentanol to di-n-pentyl ether (DNPE). Journal of Catalysis, 2006, 244, 33-42.	6.2	61
46	Water-induced rearrangement of Ca(OH)2 (0001) surfaces reacted with SO2. AICHE Journal, 2006, 52, 2876-2886.	3.6	12
47	Zeolite-catalysed liquid-phase synthesis of isopropyl -butyl ether by the addition of 2-propanol to isobutene. Journal of Catalysis, 2005, 231, 77-91.	6.2	11
48	Kinetic modeling of the reaction between hydrated lime and SO2at low temperature. AICHE Journal, 2005, 51, 1455-1466.	3.6	26
49	Acid ion-exchange resins catalysts for the liquid-phase dimerization/etherification of isoamylenes in methanol or ethanol presence. Reactive and Functional Polymers, 2005, 65, 149-160.	4.1	43
50	Enhancement of Gas Desulfurization with Hydrated Lime at Low Temperature by the Presence of NO2. Industrial & Engineering Chemistry Research, 2005, 44, 9040-9049.	3.7	17
51	Conversion, Selectivity, and Kinetics of the Dehydration of 1-Pentanol to Di-n-Pentyl Ether Catalyzed by a Microporous Ion-Exchange Resin. Industrial & Engineering Chemistry Research, 2005, 44, 318-324.	3.7	16
52	Experimental Study of the Liquid-Phase Simultaneous Syntheses of Methyltert-Butyl Ether (MTBE) andtert-Butyl Alcohol (TBA). Industrial & Engineering Chemistry Research, 2002, 41, 5359-5365.	3.7	11
53	Dehydration of 1-pentanol to di-n-pentyl ether over ion-exchange resin catalysts. Journal of Molecular Catalysis A, 2002, 182-183, 541-554.	4.8	43
54	The Effect of Ether on the Reaction Rate of MTBE Synthesis. Industrial & Engineering Chemistry Research, 2001, 40, 1348-1354.	3.7	2

#	Article	IF	CITATIONS
55	Comparative study of IPTBE synthesis on HZSM-5 and ion-exchange resin catalysts. Catalysis Today, 2001, 65, 381-389.	4.4	7
56	Kinetic study of the reaction between sulfur dioxide and calcium hydroxide at low temperature in a fixed-bed reactor. Journal of Hazardous Materials, 2000, 76, 113-123.	12.4	31
57	Effect of internal diffusion on liquid-phase synthesis of MTBE. Studies in Surface Science and Catalysis, 2000, , 2609-2614.	1.5	2
58	Conversion, Selectivity, and Kinetics of the Addition of Isopropanol to Isobutene Catalyzed by a Macroporous Ion-Exchange Resin. Industrial & Engineering Chemistry Research, 2000, 39, 1235-1241.	3.7	21
59	Drying of Acidic Macroporous Styreneâ^'Divinylbenzene Resins with 12â^'20 Cross-Linking Degree. Industrial & Engineering Chemistry Research, 2000, 39, 1416-1422.	3.7	18
60	Enhancing MTBE rate equation by considering reaction medium influence. AICHE Journal, 1998, 44, 2273-2279.	3.6	23
61	The effect of the reaction medium on the kinetics of the liquid-phase addition of methanol to isobutene. Applied Catalysis A: General, 1998, 169, 165-177.	4.3	26
62	Catalytic Activity and Deactivation of Acidic Ion-Exchange Resins in Methyltert-Butyl Ether Liquid-Phase Synthesis. Industrial & Engineering Chemistry Research, 1998, 37, 3575-3581.	3.7	28
63	Effect of solubility parameter on the MTBE synthesis kinetics. Studies in Surface Science and Catalysis, 1997, 109, 541-546.	1.5	1
64	Experimental Study of the Simultaneous Synthesis of Methyl tert-Butyl Ether and Ethyl tert-Butyl Ether in Liquid Phase. Industrial & Engineering Chemistry Research, 1997, 36, 4756-4762.	3.7	29
65	Equilibrium Constants for the Liquid-Phase Synthesis of Isopropyltert-Butyl Ether from 2-Propanol and Isobutene. Industrial & Engineering Chemistry Research, 1997, 36, 896-902.	3.7	14
66	The formation of byproducts in the reaction of synthesis of isopropyl tert-butyl ether from isopropyl alcohol and isobutene on an acidic macroporous copolymer. Reactive and Functional Polymers, 1997, 33, 201-209.	4.1	16
67	Scope and limitations of mechanistic inferences from kinetic studies on acidic macroporous resins The MTBE liquid-phase synthesis case. Applied Catalysis A: General, 1996, 134, 21-36.	4.3	34
68	Equilibrium and thermodynamics for 2-methyl-2-methoxybutane liquid-phase decomposition. Thermochimica Acta, 1995, 259, 111-120.	2.7	8
69	Kinetic study of mtbe liquid-phase synthesis using C4 olefinic cut. Chemical Engineering Science, 1994, 49, 4563-4578.	3.8	44
70	Equilibrium Constants for Methyl tert-Butyl Ether and Ethyl tert-Butyl Ether Liquid-Phase Syntheses using C4 Olefinic Cut. Industrial & Engineering Chemistry Research, 1994, 33, 2830-2835.	3.7	45
71	Reaction Calorimetry Study of the Liquid-Phase Synthesis of tert-Butyl Methyl Ether. Industrial & Engineering Chemistry Research, 1994, 33, 2578-2583.	3.7	15
72	Kinetics of the Liquid-Phase Synthesis of Ethyl tert-Butyl Ether (ETBE). Industrial & Engineering Chemistry Research, 1994, 33, 581-591.	3.7	75

#	Article	IF	CITATIONS
73	Drying of acidic macroporous styrene-divinylbenzene resins. Reactive & Functional Polymers, 1993, 21, 65-76.	0.8	30
74	Kinetic study of isobutene dimerization catalyzed by a macroporous sulphonic acid resin. Applied Catalysis A: General, 1993, 106, 155-165.	4.3	35
75	Effect of water presence on methyl tert-butyl ether and ethyl tert-butyl ether liquid-phase syntheses. Industrial & Engineering Chemistry Research, 1993, 32, 564-569.	3.7	57
76	EQUILIBRIUM CONSTANTS FOR ETHYL tert-BUTYL ETHER LIQUID-PHASE SYNTHESIS. Chemical Engineering Communications, 1993, 124, 223-232.	2.6	35
77	Equilibrium constants for methyl tert-butyl ether liquid-phase synthesis. Journal of Chemical & Engineering Data, 1992, 37, 339-343.	1.9	48
78	Application of the response surface methodology to the kinetic study of the gas-phase addition of ethanol to isobutene on a sulfonated styrene-divinylbenzene resin. Industrial & Engineering Chemistry Research, 1992, 31, 1840-1848.	3.7	28
79	Influence of resin structure on the addition of ethanol to isobutene in the vapour phase. British Polymer Journal, 1990, 23, 117-127.	0.7	13
80	Influence of resin type and water on the kinetics of the decomposition of methyl tert-butyl ether in the gas phase. Reactive & Functional Polymers, 1989, 10, 175-184.	0.8	11
81	Equilibrium constant for ethyl tert-butyl ether vapor-phase synthesis. Journal of Chemical & Engineering Data, 1989, 34, 1-5.	1.9	17
82	Molecular mechanisms of MTBE synthesis on a sulphonic acid ion exchange resin. Journal of Molecular Catalysis, 1987, 42, 257-268.	1.2	25
83	Determination of Thermodynamic Properties for the Esterification of Levulinic Acid with 1-Butene. Industrial & Engineering Chemistry Research, 0, , .	3.7	2