Victor Leiva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9457917/publications.pdf

Version: 2024-02-01

81434 162838 4,792 180 41 57 citations h-index g-index papers 183 183 183 1508 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bootstrap control charts for quantiles based on logâ€symmetric distributions with applications to the monitoring of reliability data. Quality and Reliability Engineering International, 2023, 39, 1-24.	1.4	4
2	Asymmetric autoregressive models: statistical aspects and a financial application under COVID-19 pandemic. Journal of Applied Statistics, 2022, 49, 1323-1347.	0.6	15
3	Logâ€symmetric quantile regression models. Statistica Neerlandica, 2022, 76, 124-163.	0.9	27
4	Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications. Statistical Papers, 2022, 63, 919-942.	0.7	11
5	Matrix differential calculus with applications in the multivariate linear model and its diagnostics. Journal of Multivariate Analysis, 2022, 188, 104849.	0.5	11
6	A new clustering algorithm based on a radar scanning strategy with applications to machine learning data. Expert Systems With Applications, 2022, 191, 116143.	4.4	11
7	A Study on Computational Algorithms in the Estimation of Parameters for a Class of Beta Regression Models. Mathematics, 2022, 10, 299.	1.1	7
8	Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems. Computers, Materials and Continua, 2022, 72, 399-416.	1.5	14
9	Multivariate methods to monitor the risk of critical episodes of environmental contamination using an asymmetric distribution with data of Santiago, Chile., 2022,, 359-378.		O
10	Abnormality Detection and Failure Prediction Using Explainable Bayesian Deep Learning: Methodology and Case Study with Industrial Data. Mathematics, 2022, 10, 554.	1.1	20
11	Multiscale Monitoring Using Machine Learning Methods: New Methodology and an Industrial Application to a Photovoltaic System. Mathematics, 2022, 10, 890.	1.1	13
12	A Type I Generalized Logistic Distribution: Solving Its Estimation Problems with a Bayesian Approach and Numerical Applications Based on Simulated and Engineering Data. Symmetry, 2022, 14, 655.	1.1	3
13	Classifying COVID-19 based on amino acids encoding with machine learning algorithms. Chemometrics and Intelligent Laboratory Systems, 2022, 224, 104535.	1.8	16
14	An overview on parametric quantile regression models and their computational implementation with applications to biomedical problems including COVID-19 data. Computer Methods and Programs in Biomedicine, 2022, 221, 106816.	2.6	13
15	Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications. Mathematics, 2022, 10, 1389.	1.1	12
16	A novel claim size distribution based on a Birnbaum–Saunders and gamma mixture capturing extreme values in insurance: estimation, regression, and applications. Computational and Applied Mathematics, 2022, 41, .	1.0	3
17	Grýss-Type Inequalities for Vector-Valued Functions. Mathematics, 2022, 10, 1535.	1.1	2
18	Numerical Solutions of a Differential System Considering a Pure Hybrid Fuzzy Neutral Delay Theory. Electronics (Switzerland), 2022, 11, 1478.	1.8	10

#	Article	IF	Citations
19	A New Wavelet-Based Privatization Mechanism for Probability Distributions. Sensors, 2022, 22, 3743.	2.1	3
20	An Equity-Based Optimization Model to Solve the Location Problem for Healthcare Centers Applied to Hospital Beds and COVID-19 Vaccination. Mathematics, 2022, 10, 1825.	1.1	7
21	Modern Multivariate Statistical Methods for Evaluating the Impact of WhatsApp on Academic Performance: Methodology and Case Study in India. Applied Sciences (Switzerland), 2022, 12, 6141.	1.3	7
22	A Stochastic Optimization Algorithm to Enhance Controllers of Photovoltaic Systems. Mathematics, 2022, 10, 2128.	1.1	7
23	Improvement of Some Hayashi–Ostrowski Type Inequalities with Applications in a Probability Setting. Mathematics, 2022, 10, 2316.	1.1	2
24	On a Novel Dynamics of SEIR Epidemic Models with a Potential Application to COVID-19. Symmetry, 2022, 14, 1436.	1.1	13
25	Birnbaumâ€Saunders quantile regression and its diagnostics with application to economic data. Applied Stochastic Models in Business and Industry, 2021, 37, 53-73.	0.9	37
26	A new BISARMA time series model for forecasting mortality using weather and particulate matter data. Journal of Forecasting, 2021, 40, 346-364.	1.6	27
27	A new principal component analysis by particle swarm optimization with an environmental application for data science. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1969-1984.	1.9	30
28	A New Algorithm for Computing Disjoint Orthogonal Components in the Three-Way Tucker Model. Mathematics, 2021, 9, 203.	1.1	9
29	Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model. Mathematics, 2021, 9, 645.	1.1	11
30	A New Two-Stage Algorithm for Solving Optimization Problems. Entropy, 2021, 23, 491.	1.1	25
31	A New Quantile Regression for Modeling Bounded Data under a Unit Birnbaum–Saunders Distribution with Applications in Medicine and Politics. Symmetry, 2021, 13, 682.	1.1	25
32	Knowledge Discovery for Higher Education Student Retention Based on Data Mining: Machine Learning Algorithms and Case Study in Chile. Entropy, 2021, 23, 485.	1.1	50
33	Optimal Sample Size for the Birnbaum–Saunders Distribution under Decision Theory with Symmetric and Asymmetric Loss Functions. Symmetry, 2021, 13, 926.	1.1	6
34	Disjoint and Functional Principal Component Analysis for Infected Cases and Deaths Due to COVID-19 in South American Countries with Sensor-Related Data. Sensors, 2021, 21, 4094.	2.1	25
35	Modeling the Risk of Infectious Diseases Transmitted by Aedes aegypti Using Survival and Aging Statistical Analysis with a Case Study in Colombia. Mathematics, 2021, 9, 1488.	1.1	4
36	Lot-Size Models with Uncertain Demand Considering Its Skewness/Kurtosis and Stochastic Programming Applied to Hospital Pharmacy with Sensor-Related COVID-19 Data. Sensors, 2021, 21, 5198.	2.1	15

#	Article	IF	CITATIONS
37	Estimating the covariance matrix of the coefficient estimator in multivariate partial least squares regression with chemical applications. Chemometrics and Intelligent Laboratory Systems, 2021, 214, 104328.	1.8	6
38	Modeling COVID-19 Cases Statistically and Evaluating Their Effect on the Economy of Countries. Mathematics, 2021, 9, 1558.	1.1	26
39	A New Birnbaum–Saunders Distribution and Its Mathematical Features Applied to Bimodal Real-World Data from Environment and Medicine. Mathematics, 2021, 9, 1891.	1.1	3
40	A New Algorithm for Computing Disjoint Orthogonal Components in the Parallel Factor Analysis Model with Simulations and Applications to Real-World Data. Mathematics, 2021, 9, 2058.	1.1	8
41	A Two-Stage Location Problem with Order Solved Using a Lagrangian Algorithm and Stochastic Programming for a Potential Use in COVID-19 Vaccination Based on Sensor-Related Data. Sensors, 2021, 21, 5352.	2.1	13
42	A New Approach to Predicting Cryptocurrency Returns Based on the Gold Prices with Support Vector Machines during the COVID-19 Pandemic Using Sensor-Related Data. Sensors, 2021, 21, 6319.	2.1	24
43	Homogeneity tests for functional data based on depth-depth plots with chemical applications. Chemometrics and Intelligent Laboratory Systems, 2021, 219, 104420.	1.8	4
44	Breakpoint Analysis for the COVID-19 Pandemic and Its Effect on the Stock Markets. Entropy, 2021, 23, 100.	1.1	30
45	Sign, Wilcoxon and Mann-Whitney Tests for Functional Data: An Approach Based on Random Projections. Mathematics, 2021, 9, 44.	1.1	13
46	Modeling Mortality Based on Pollution and Temperature Using a New Birnbaum–Saunders Autoregressive Moving Average Structure with Regressors and Related-Sensors Data. Sensors, 2021, 21, 6518.	2.1	2
47	A New Quantile Regression Model and Its Diagnostic Analytics for a Weibull Distributed Response with Applications. Mathematics, 2021, 9, 2768.	1.1	14
48	Overview of Explainable Artificial Intelligence for Prognostic and Health Management of Industrial Assets Based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Sensors, 2021, 21, 8020.	2.1	29
49	Econometric modeling of productivity and technical efficiency in the Chilean manufacturing industry. Computers and Industrial Engineering, 2020, 139, 105793.	3.4	37
50	On a new type of Birnbaum-Saunders models and its inference and application to fatigue data. Journal of Applied Statistics, 2020, 47, 2690-2710.	0.6	9
51	On mean-based bivariate Birnbaum-Saunders distributions: Properties, inference and application. Communications in Statistics - Theory and Methods, 2020, 49, 6032-6056.	0.6	4
52	Data-Influence Analytics in Predictive Models Applied to Asthma Disease. Mathematics, 2020, 8, 1587.	1.1	2
53	On a new mixture-based regression model: simulation and application to data with high censoring. Journal of Statistical Computation and Simulation, 2020, 90, 2861-2877.	0.7	7
54	[Invited tutorial] Birnbaum–Saunders regression models: a comparative evaluation of three approaches. Journal of Statistical Computation and Simulation, 2020, 90, 2552-2570.	0.7	12

#	Article	IF	CITATIONS
55	Approximating the Distribution of the Product of Two Normally Distributed Random Variables. Symmetry, 2020, 12, 1201.	1.1	2
56	Global and local diagnostic analytics for a geostatistical model based on a new approach to quantile regression. Stochastic Environmental Research and Risk Assessment, 2020, 34, 1457-1471.	1.9	19
57	A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess. Symmetry, 2020, 12, 1439.	1.1	7
58	Cokriging Prediction Using as Secondary Variable a Functional Random Field with Application in Environmental Pollution. Mathematics, 2020, 8, 1305.	1.1	23
59	Robust Three-Step Regression Based on Comedian and Its Performance in Cell-Wise and Case-Wise Outliers. Mathematics, 2020, 8, 1259.	1.1	17
60	On a logistic regression model with random intercept: diagnostic analytics, simulation and biological application. Journal of Statistical Computation and Simulation, 2020, 90, 2354-2383.	0.7	4
61	Diagnostic Analytics for an Autoregressive Model under the Skew-Normal Distribution. Mathematics, 2020, 8, 693.	1.1	21
62	Birnbaum-Saunders Quantile Regression Models with Application to Spatial Data. Mathematics, 2020, 8, 1000.	1.1	31
63	An errors-in-variables model based on the Birnbaum–Saunders distribution and its diagnostics with an application to earthquake data. Stochastic Environmental Research and Risk Assessment, 2020, 34, 369-380.	1.9	23
64	A Methodology for Data-Driven Decision-Making in the Monitoring of Particulate Matter Environmental Contamination in Santiago of Chile. Reviews of Environmental Contamination and Toxicology, 2020, 250, 45-67.	0.7	7
65	On Some Goodness-of-Fit Tests and Their Connection to Graphical Methods with Uncensored and Censored Data. Advances in Intelligent Systems and Computing, 2020, , 157-183.	0.5	2
66	Partial Least Squares Models and Their Formulations, Diagnostics and Applications to Spectroscopy. Advances in Intelligent Systems and Computing, 2020, , 470-495.	0.5	0
67	Birnbaum–Saunders functional regression models for spatial data. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1765-1780.	1.9	31
68	An interview with Sam C. Saunders. Applied Stochastic Models in Business and Industry, 2019, 35, 133-137.	0.9	2
69	A Cobb–Douglas type model with stochastic restrictions: formulation, local influence diagnostics and data analytics in economics. Quality and Quantity, 2019, 53, 1693-1719.	2.0	14
70	Failure rate of Birnbaum–Saunders distributions: Shape, change-point, estimation and robustness. Brazilian Journal of Probability and Statistics, 2019, 33, .	0.1	21
71	Non-pharmacological motor-cognitive treatment to improve the mental health of elderly adults. Revista Da Associação Médica Brasileira, 2019, 65, 394-403.	0.3	2
72	On a partial least squares regression model for asymmetric data with a chemical application in mining. Chemometrics and Intelligent Laboratory Systems, 2019, 190, 55-68.	1.8	48

#	Article	IF	CITATIONS
73	Modeling lot-size with time-dependent demand based on stochastic programming and case study of drug supply in Chile. PLoS ONE, 2019, 14, e0212768.	1.1	13
74	Logâ€symmetric regression models: information criteria and application to movie business and industry data with economic implications. Applied Stochastic Models in Business and Industry, 2019, 35, 963-977.	0.9	33
75	Recent developments of control charts, identification of big data sources and future trends of current research. Technological Forecasting and Social Change, 2019, 144, 221-232.	6.2	50
76	Monitoring urban environmental pollution by bivariate control charts: New methodology and case study in Santiago, Chile. Environmetrics, 2019, 30, e2551.	0.6	32
77	Sensitivity analysis of longitudinal count responses: a local influence approach and application to medical data. Journal of Applied Statistics, 2019, 46, 1021-1042.	0.6	7
78	Influence diagnostics in mixed effects logistic regression models. Test, 2019, 28, 920-942.	0.7	11
79	Discussion of "Birnbaumâ€Saunders distribution: A review of models, analysis, and applications―and a novel financial extreme value data analytics from natural disasters. Applied Stochastic Models in Business and Industry, 2019, 35, 90-95.	0.9	0
80	Discussion of "Birnbaumâ€Saunders distribution: A review of models, analysis, and applications―and a novel multivariate data analytics for an economics example in the textile industry. Applied Stochastic Models in Business and Industry, 2019, 35, 112-117.	0.9	7
81	Birnbaum–Saunders autoregressive conditional duration models applied to high-frequency financial data. Statistical Papers, 2019, 60, 1605-1629.	0.7	44
82	Statistical Quality Control and Reliability Analysis Using the Birnbaum-Saunders Distribution with Industrial Applications. ICSA Book Series in Statistics, 2019, , 21-53.	0.0	2
83	Birnbaum-Saunders spatial regression models: Diagnostics and application to chemical data. Chemometrics and Intelligent Laboratory Systems, 2018, 177, 114-128.	1.8	51
84	Kriging with external drift in a Birnbaum–Saunders geostatistical model. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1517-1530.	1.9	26
85	Generalized Tobit models: diagnostics and application in econometrics. Journal of Applied Statistics, 2018, 45, 145-167.	0.6	19
86	L-moments of the Birnbaum–Saunders distribution and its extreme value version: estimation, goodness of fit and application to earthquake data. Journal of Applied Statistics, 2018, 45, 187-209.	0.6	21
87	On a tobit–Birnbaum–Saunders model with an application to medical data. Journal of Applied Statistics, 2018, 45, 932-955.	0.6	22
88	A beta partial least squares regression model: Diagnostics and application to mining industry data. Applied Stochastic Models in Business and Industry, 2018, 34, 305-321.	0.9	21
89	Robust multivariate control charts based on Birnbaum–Saunders distributions. Journal of Statistical Computation and Simulation, 2018, 88, 182-202.	0.7	49
90	Multivariate Generalized Birnbaum-Saunders Models Applied to Case Studies in Bio-Engineering and Industry. Contributions To Statistics, 2018, , 299-320.	0.2	0

#	Article	IF	Citations
91	A survival model with Birnbaum–Saunders frailty for uncensored and censored cancer data. Brazilian Journal of Probability and Statistics, 2018, 32, .	0.1	21
92	Multivariate Birnbaum-Saunders Distributions: Modelling and Applications. Risks, 2018, 6, 21.	1.3	20
93	On a Business Confidence Index and Its Data Analytics: A Chilean Case. Contributions To Statistics, 2018, , 67-85.	0.2	0
94	A new estimator for the covariance of the PLS coefficients estimator with applications to chemical data. Journal of Chemometrics, 2018, 32, e3069.	0.7	8
95	Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data. Statistics in Medicine, 2018, 37, 4421-4440.	0.8	44
96	Cumulative damage and times of occurrence for a multicomponent system: A discrete time approach. Journal of Multivariate Analysis, 2018, 168, 323-333.	0.5	3
97	Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stochastic Environmental Research and Risk Assessment, 2017, 31, 105-124.	1.9	48
98	Birnbaumâ€"Saunders frailty regression models: Diagnostics and application to medical data. Biometrical Journal, 2017, 59, 291-314.	0.6	37
99	Environmental Applications Based on Birnbaum–Saunders Models. , 2017, , 283-304.		4
100	A methodology based on the Birnbaum–Saunders distribution for reliability analysis applied to nano-materials. Reliability Engineering and System Safety, 2017, 157, 192-201.	5.1	21
101	A stochastic methodology for risk assessment of a large earthquake when a long time has elapsed. Stochastic Environmental Research and Risk Assessment, 2017, 31, 2327-2336.	1.9	4
102	Goodness of Fit for the Birnbaum–Saunders Distribution. , 2016, , 69-85.		0
103	Data Analyses with the Birnbaum–Saunders Distribution. , 2016, , 87-127.		2
104	Inference for the Birnbaum–Saunders Distribution. , 2016, , 39-49.		5
105	A methodology for stochastic inventory models based on a zeroâ€adjusted Birnbaumâ€Saunders distribution. Applied Stochastic Models in Business and Industry, 2016, 32, 74-89.	0.9	29
106	Reparameterized Birnbaum-Saunders regression models with varying precision. Electronic Journal of Statistics, $2016,10,\ldots$	0.4	49
107	Inventory management in food companies with statistically dependent demand. Academia Revista Latinoamericana De Administracion, 2016, 29, 450-485.	0.6	7
108	Inventory management for new products with triangularly distributed demand and lead-time. Computers and Operations Research, 2016, 69, 97-108.	2.4	20

#	Article	IF	CITATIONS
109	A Multivariate Log-Linear Model for Birnbaum-Saunders Distributions. IEEE Transactions on Reliability, 2016, 65, 816-827.	3.5	48
110	On a nonlinear Birnbaum–Saunders model based on a bivariate construction and its characteristics. Communications in Statistics - Theory and Methods, 2016, 45, 772-793.	0.6	5
111	Diagnostics in multivariate generalized Birnbaum-Saunders regression models. Journal of Applied Statistics, 2016, 43, 2829-2849.	0.6	49
112	Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics. Journal of Applied Statistics, 2016, 43, 627-642.	0.6	18
113	Influence diagnostic analysis in the possibly heteroskedastic linear model with exact restrictions. Statistical Methods and Applications, 2016, 25, 227-249.	0.7	14
114	Extreme value Birnbaum–Saunders regression models applied to environmental data. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1045-1058.	1.9	35
115	Genesis of the Birnbaum–Saunders Distribution. , 2016, , 1-15.		19
116	Modeling Based on the Birnbaum–Saunders Distribution. , 2016, , 51-68.		0
117	Characterizations of the Birnbaum–Saunders Distribution. , 2016, , 17-38.		4
118	The Hawkes Process with Different Exciting Functions and its Asymptotic Behavior. Journal of Applied Probability, 2015, 52, 37-54.	0.4	5
119	On matrix-variate Birnbaum–Saunders distributions and their estimation and application. Brazilian Journal of Probability and Statistics, 2015, 29, .	0.1	18
120	The Hawkes Process with Different Exciting Functions and its Asymptotic Behavior. Journal of Applied Probability, 2015, 52, 37-54.	0.4	10
121	A criterion for environmental assessment using Birnbaum–Saunders attribute control charts. Environmetrics, 2015, 26, 463-476.	0.6	50
122	Exploring the Potential Use of the Birnbaum-Saunders Distribution in Inventory Management. Mathematical Problems in Engineering, 2015, 2015, 1-9.	0.6	26
123	Monitoring Environmental Risk by a Methodology Based on Control Charts. Springer Proceedings in Mathematics and Statistics, 2015, , 177-197.	0.1	6
124	Modeling neural activity with cumulative damage distributions. Biological Cybernetics, 2015, 109, 421-433.	0.6	26
125	Statistical Inference on a Stochastic Epidemic Model. Communications in Statistics Part B: Simulation and Computation, 2015, 44, 2297-2314.	0.6	9
126	Optimization of Contribution Margins in Food Services by Modeling Independent Component Demand. Revista Colombiana De Estadistica, 2015, 38, 1-30.	0.2	22

#	Article	IF	CITATIONS
127	Graphical Tools to Assess Goodness-of-Fit in Non-Location-Scale Distributions. Revista Colombiana De Estadistica, 2014, 37, 341-365.	0.2	9
128	A Methodology for Biplots Based on Bootstrapping with R. Revista Colombiana De Estadistica, 2014, 37, 367-397.	0.2	14
129	Birnbaum–Saunders statistical modelling: a new approach. Statistical Modelling, 2014, 14, 21-48.	0.5	62
130	Goodness-of-Fit Tests for the Birnbaum-Saunders Distribution With Censored Reliability Data. IEEE Transactions on Reliability, 2014, 63, 543-554.	3.5	32
131	Capability indices for Birnbaum–Saunders processes applied to electronic and food industries. Journal of Applied Statistics, 2014, 41, 1881-1902.	0.6	84
132	Diagnostics in Birnbaum–Saunders accelerated life models with an application to fatigue data. Applied Stochastic Models in Business and Industry, 2014, 30, 115-131.	0.9	50
133	An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stochastic Environmental Research and Risk Assessment, 2014, 28, 1629-1641.	1.9	194
134	A family of autoregressive conditional duration models applied to financial data. Computational Statistics and Data Analysis, 2014, 79, 175-191.	0.7	50
135	On a variance stabilizing model and its application to genomic data. Journal of Applied Statistics, 2013, 40, 2354-2371.	0.6	2
136	A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data. Stochastic Environmental Research and Risk Assessment, 2013, 27, 1479-1491.	1.9	60
137	Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data. Computational Statistics and Data Analysis, 2013, 63, 1-15.	0.7	64
138	On a Birnbaum–Saunders distribution arising from a non-homogeneous Poisson process. Statistics and Probability Letters, 2013, 83, 1233-1239.	0.4	22
139	A new variance stabilizing transformation for gene expression data analysis. Statistical Applications in Genetics and Molecular Biology, 2013, 12, 653-66.	0.2	8
140	Air Contaminant Statistical Distributions with Application to PM10 in Santiago, Chile. Reviews of Environmental Contamination and Toxicology, 2013, 223, 1-31.	0.7	22
141	The extreme value Birnbaum-Saunders model, its moments and an application in biometry. Biometrical Letters, 2012, 49, 81-94.	0.4	11
142	About Birnbaum–Saunders Distributions Based on the Johnson System. Communications in Statistics - Theory and Methods, 2012, 41, 2061-2079.	0.6	15
143	Shape and change point analyses of the Birnbaum–Saunders- hazard rate and associated estimation. Computational Statistics and Data Analysis, 2012, 56, 3887-3897.	0.7	42
144	Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum–Saunders distributions. Journal of Multivariate Analysis, 2012, 104, 126-139.	0.5	36

#	Article	IF	CITATIONS
145	Robust statistical modeling using the Birnbaumâ€Saundersâ€ <i>t</i> distribution applied to insurance. Applied Stochastic Models in Business and Industry, 2012, 28, 16-34.	0.9	85
146	Influence analysis in skew-Birnbaum–Saunders regression models and applications. Journal of Applied Statistics, 2011, 38, 1633-1649.	0.6	45
147	Influence diagnostics on the coefficient of variation of elliptically contoured distributions. Journal of Applied Statistics, 2011, 38, 513-532.	0.6	10
148	Birnbaum-Saunders Mixed Models for Censored Reliability Data Analysis. IEEE Transactions on Reliability, 2011, 60, 748-758.	3.5	50
149	Estimation of extreme percentiles in Birnbaum–Saunders distributions. Computational Statistics and Data Analysis, 2011, 55, 1665-1678.	0.7	42
150	On the Fernández–Steel distribution: Inference and application. Computational Statistics and Data Analysis, 2011, 55, 2951-2961.	0.7	12
151	On some mixture models based on the Birnbaum–Saunders distribution and associated inference. Journal of Statistical Planning and Inference, 2011, 141, 2175-2190.	0.4	40
152	Modeling wind energy flux by a Birnbaum–Saunders distribution with an unknown shift parameter. Journal of Applied Statistics, 2011, 38, 2819-2838.	0.6	47
153	Influence diagnostics in the tobit censored response model. Statistical Methods and Applications, 2010, 19, 379-397.	0.7	33
154	An extended Birnbaum–Saunders model and its application in the study of environmental quality in Santiago, Chile. Stochastic Environmental Research and Risk Assessment, 2010, 24, 771-782.	1.9	45
155	Two New Mixture Models Related to the Inverse Gaussian Distribution. Methodology and Computing in Applied Probability, 2010, 12, 199-212.	0.7	52
156	On a goodness-of-fit test for normality with unknown parameters and type-II censored data. Journal of Applied Statistics, 2010, 37, 1193-1211.	0.6	12
157	A Skewed Sinh-Normal Distribution and Its Properties and Application to Air Pollution. Communications in Statistics - Theory and Methods, 2010, 39, 426-443.	0.6	67
158	A New Goodness-of-Fit Test for Censored Data with an Application in Monitoring Processes. Communications in Statistics Part B: Simulation and Computation, 2009, 38, 1161-1177.	0.6	13
159	A Non-Central Version of the Birnbaum-Saunders Distribution for Reliability Analysis. IEEE Transactions on Reliability, 2009, 58, 152-160.	3 . 5	48
160	A length-biased version of the Birnbaum-Saunders distribution with application in water quality. Stochastic Environmental Research and Risk Assessment, 2009, 23, 299-307.	1.9	56
161	On a length-biased life distribution based on the sinh-normal model. Journal of the Korean Statistical Society, 2009, 38, 323-330.	0.3	5
162	On the glog-normal distribution and its application to the gene expression problem. Computational Statistics and Data Analysis, 2009, 53, 1613-1621.	0.7	11

#	Article	IF	Citations
163	An R implementation for generalized Birnbaum–Saunders distributions. Computational Statistics and Data Analysis, 2009, 53, 1511-1528.	0.7	49
164	Mixture inverse Gaussian distributions and its transformations, moments and applications. Statistics, 2009, 43, 91-104.	0.3	67
165	A new class of survival regression models with heavy-tailed errors: robustness and diagnostics. Lifetime Data Analysis, 2008, 14, 316-332.	0.4	74
166	A new class of inverse Gaussian type distributions. Metrika, 2008, 68, 31-49.	0.5	14
167	Generalized Birnbaumâ€Saunders distributions applied to air pollutant concentration. Environmetrics, 2008, 19, 235-249.	0.6	133
168	Lifetime analysis based on the generalized Birnbaum–Saunders distribution. Computational Statistics and Data Analysis, 2008, 52, 2079-2097.	0.7	77
169	A new three-parameter extension of the inverse Gaussian distribution. Statistics and Probability Letters, 2008, 78, 1266-1273.	0.4	8
170	The Generalized Birnbaum–Saunders Distribution and Its Theory, Methodology, and Application. Communications in Statistics - Theory and Methods, 2008, 37, 645-670.	0.6	90
171	A Robust Procedure in Nonlinear Models for Repeated Measurements. Communications in Statistics - Theory and Methods, 2008, 38, 138-155.	0.6	6
172	Random number generators for the generalized Birnbaum–Saunders distribution. Journal of Statistical Computation and Simulation, 2008, 78, 1105-1118.	0.7	31
173	AnRPackage for a General Class of Inverse Gaussian Distributions. Journal of Statistical Software, 2008, 26, .	1.8	22
174	Acceptance Sampling Plans from Truncated Life Tests Based on the Generalized Birnbaum–Saunders Distribution. Communications in Statistics Part B: Simulation and Computation, 2007, 36, 643-656.	0.6	208
175	Influence diagnostics in log-Birnbaum–Saunders regression models with censored data. Computational Statistics and Data Analysis, 2007, 51, 5694-5707.	0.7	104
176	A New Fatigue Life Model Based on the Family of Skew-Elliptical Distributions. Communications in Statistics - Theory and Methods, 2006, 35, 229-244.	0.6	53
177	A new family of life distributions based on the elliptically contoured distributions. Journal of Statistical Planning and Inference, 2005, 128, 445-457.	0.4	133
178	Influence Diagnostics in log-Birnbaum-Saunders Regression Models. Journal of Applied Statistics, 2004, 31, 1049-1064.	0.6	77
179	Doubly Non-centraltand Distributions Obtained Under Singular and Non-singular Elliptic Distributions. Communications in Statistics - Theory and Methods, 2003, 32, 11-32.	0.6	12
180	Influence Diagnostics for Elliptical Multivariate Linear Regression Models. Communications in Statistics - Theory and Methods, 2003, 32, 625-641.	0.6	54