
Tomislav Dragicevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9457860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Transactions on Power Electronics, 2016, 31, 3528-3549.	5.4	974
2	DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Transactions on Power Electronics, 2015, , 1-1.	5.4	827
3	Supervisory Control of an Adaptive-Droop Regulated DC Microgrid With Battery Management Capability. IEEE Transactions on Power Electronics, 2014, 29, 695-706.	5.4	636
4	Hierarchical Control for Multiple DC-Microgrids Clusters. IEEE Transactions on Energy Conversion, 2014, 29, 922-933.	3.7	338
5	Microgrid supervisory controllers and energy management systems: A literature review. Renewable and Sustainable Energy Reviews, 2016, 60, 1263-1273.	8.2	323
6	Particle Swarm Optimization Based Solar PV Array Reconfiguration of the Maximum Power Extraction Under Partial Shading Conditions. IEEE Transactions on Sustainable Energy, 2018, 9, 74-85.	5.9	259
7	Intelligent Distributed Generation and Storage Units for DC Microgrids—A New Concept on Cooperative Control Without Communications Beyond Droop Control. IEEE Transactions on Smart Grid, 2014, 5, 2476-2485.	6.2	256
8	Model Predictive Control of Power Converters for Robust and Fast Operation of AC Microgrids. IEEE Transactions on Power Electronics, 2018, 33, 6304-6317.	5.4	249
9	Weighting Factor Design in Model Predictive Control of Power Electronic Converters: An Artificial Neural Network Approach. IEEE Transactions on Industrial Electronics, 2019, 66, 8870-8880.	5.2	219
10	On the Secondary Control Architectures of AC Microgrids: An Overview. IEEE Transactions on Power Electronics, 2020, 35, 6482-6500.	5.4	218
11	Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System. IEEE Transactions on Energy Conversion, 2014, 29, 882-892.	3.7	215
12	A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Conversion and Management, 2017, 135, 463-476.	4.4	213
13	Robust Networked Control Scheme for Distributed Secondary Control of Islanded Microgrids. IEEE Transactions on Industrial Electronics, 2014, 61, 5363-5374.	5.2	211
14	A Control Architecture to Coordinate Renewable Energy Sources and Energy Storage Systems in Islanded Microgrids. IEEE Transactions on Smart Grid, 2015, 6, 1156-1166.	6.2	193
15	Modeling and Sensitivity Study of Consensus Algorithm-Based Distributed Hierarchical Control for DC Microgrids. IEEE Transactions on Smart Grid, 2016, 7, 1504-1515.	6.2	190
16	Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1205-1221.	3.7	189
17	Small-Signal Analysis of the Microgrid Secondary Control Considering a Communication Time Delay. IEEE Transactions on Industrial Electronics, 2016, 63, 6257-6269.	5.2	171
18	A Stealth Cyber-Attack Detection Strategy for DC Microgrids. IEEE Transactions on Power Electronics, 2019. 34. 8162-8174.	5.4	169

#	Article	IF	CITATIONS
19	Latest Advances of Model Predictive Control in Electrical Drives—Part I: Basic Concepts and Advanced Strategies. IEEE Transactions on Power Electronics, 2022, 37, 3927-3942.	5.4	166
20	Coordinated Control Based on Bus-Signaling and Virtual Inertia for Islanded DC Microgrids. IEEE Transactions on Smart Grid, 2015, 6, 2627-2638.	6.2	162
21	Distributed Voltage Unbalance Compensation in Islanded Microgrids by Using a Dynamic Consensus Algorithm. IEEE Transactions on Power Electronics, 2016, 31, 827-838.	5.4	161
22	Load Frequency Control in Microgrids Based on a Stochastic Noninteger Controller. IEEE Transactions on Sustainable Energy, 2018, 9, 853-861.	5.9	155
23	A Distributed Control Strategy for Coordination of an Autonomous LVDC Microgrid Based on Power-Line Signaling. IEEE Transactions on Industrial Electronics, 2014, 61, 3313-3326.	5.2	152
24	A robust adaptive load frequency control for micro-grids. ISA Transactions, 2016, 65, 220-229.	3.1	141
25	Multiagent-Based Distributed State of Charge Balancing Control for Distributed Energy Storage Units in AC Microgrids. IEEE Transactions on Industry Applications, 2017, 53, 2369-2381.	3.3	125
26	Artificial Intelligence Aided Automated Design for Reliability of Power Electronic Systems. IEEE Transactions on Power Electronics, 2019, 34, 7161-7171.	5.4	123
27	Dynamic Stabilization of DC Microgrids With Predictive Control of Point-of-Load Converters. IEEE Transactions on Power Electronics, 2018, 33, 10872-10884.	5.4	122
28	Inertia Response Improvement in AC Microgrids: A Fuzzy-Based Virtual Synchronous Generator Control. IEEE Transactions on Power Electronics, 2020, 35, 4321-4331.	5.4	122
29	Model Predictive Control of DC–DC Converters to Mitigate the Effects of Pulsed Power Loads in Naval DC Microgrids. IEEE Transactions on Industrial Electronics, 2019, 66, 5676-5685.	5.2	117
30	Detection of False Data Injection Cyber-Attacks in DC Microgrids Based on Recurrent Neural Networks. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5294-5310.	3.7	114
31	Tertiary and Secondary Control Levels for Efficiency Optimization and System Damping in Droop Controlled DC–DC Converters. IEEE Transactions on Smart Grid, 2015, 6, 2615-2626.	6.2	110
32	Networked Fuzzy Predictive Control of Power Buffers for Dynamic Stabilization of DC Microgrids. IEEE Transactions on Industrial Electronics, 2019, 66, 1356-1362.	5.2	109
33	On Detection of False Data in Cooperative DC Microgrids—A Discordant Element Approach. IEEE Transactions on Industrial Electronics, 2020, 67, 6562-6571.	5.2	109
34	Support Vector Machine-Based Islanding and Grid Fault Detection in Active Distribution Networks. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2385-2403.	3.7	108
35	Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility. IEEE Transactions on Sustainable Energy, 2014, 5, 1367-1378.	5.9	106
36	An Offset-Free Composite Model Predictive Control Strategy for DC/DC Buck Converter Feeding Constant Power Loads. IEEE Transactions on Power Electronics, 2020, 35, 5331-5342.	5.4	101

#	Article	IF	CITATIONS
37	Bipolar DC Power Conversion: State-of-the-Art and Emerging Technologies. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1192-1204.	3.7	97
38	Anti-Islanding Protection of PV-Based Microgrids Consisting of PHEVs Using SVMs. IEEE Transactions on Smart Grid, 2020, 11, 483-500.	6.2	96
39	Model Predictive Control for Dual-Active-Bridge Converters Supplying Pulsed Power Loads in Naval DC Micro-Grids. IEEE Transactions on Power Electronics, 2020, 35, 1957-1966.	5.4	95
40	Cyber Security in Control of Grid-Tied Power Electronic Converters—Challenges and Vulnerabilities. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5326-5340.	3.7	90
41	A Control Algorithm for Electric Vehicle Fast Charging Stations Equipped With Flywheel Energy Storage Systems. IEEE Transactions on Power Electronics, 2016, 31, 6674-6685.	5.4	86
42	Current-Sensorless Finite-Set Model Predictive Control for <i>LC</i> -Filtered Voltage Source Inverters. IEEE Transactions on Power Electronics, 2020, 35, 1086-1095.	5.4	86
43	Tracking Control for a DC Microgrid Feeding Uncertain Loads in More Electric Aircraft: Adaptive Backstepping Approach. IEEE Transactions on Industrial Electronics, 2019, 66, 5644-5652.	5.2	84
44	Robust Non-Fragile Fuzzy Control of Uncertain DC Microgrids Feeding Constant Power Loads. IEEE Transactions on Power Electronics, 2019, 34, 11300-11308.	5.4	83
45	Improved Stabilization of Nonlinear DC Microgrids: Cubature Kalman Filter Approach. IEEE Transactions on Industry Applications, 2018, 54, 5104-5112.	3.3	81
46	High-Bandwidth Secondary Voltage and Frequency Control of VSC-Based AC Microgrid. IEEE Transactions on Power Electronics, 2019, 34, 11320-11331.	5.4	79
47	A Novel Cloud-Based Platform for Implementation of Oblivious Power Routing for Clusters of Microgrids. IEEE Access, 2017, 5, 607-619.	2.6	77
48	Graphical Evaluation of Time-Delay Compensation Techniques for Digitally Controlled Converters. IEEE Transactions on Power Electronics, 2018, 33, 2601-2614.	5.4	77
49	Time-Delayed Stabilizing Secondary Load Frequency Control of Shipboard Microgrids. IEEE Systems Journal, 2019, 13, 3233-3241.	2.9	76
50	EKF-Based Predictive Stabilization of Shipboard DC Microgrids With Uncertain Time-Varying Load. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 901-909.	3.7	74
51	Modelâ€predictive control based on Takagi‣ugeno fuzzy model for electrical vehicles delayed model. IET Electric Power Applications, 2017, 11, 918-934.	1.1	70
52	Design of Quadratic D-Stable Fuzzy Controller for DC Microgrids With Multiple CPLs. IEEE Transactions on Industrial Electronics, 2019, 66, 4805-4812.	5.2	68
53	Robust and Fast Voltage-Source-Converter (VSC) Control for Naval Shipboard Microgrids. IEEE Transactions on Power Electronics, 2019, 34, 8299-8303.	5.4	68
54	Adaptive TS Fuzzy-Based MPC for DC Microgrids With Dynamic CPLs: Nonlinear Power Observer Approach. IEEE Systems Journal, 2019, 13, 3203-3210.	2.9	68

#	Article	IF	CITATIONS
55	Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station. IEEE Transactions on Smart Grid, 2014, 5, 2825-2835.	6.2	67
56	Economic dispatch of virtual power plants in an event-driven service-oriented framework using standards-based communications. Electric Power Systems Research, 2011, 81, 2108-2119.	2.1	63
57	The Future 5G Network-Based Secondary Load Frequency Control in Shipboard Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 836-844.	3.7	62
58	Model Predictive Control for Dual Active Bridge in Naval DC Microgrids Supplying Pulsed Power Loads Featuring Fast Transition and Online Transformer Current Minimization. IEEE Transactions on Industrial Electronics, 2020, 67, 5197-5203.	5.2	62
59	Predictive Control Based DC Microgrid Stabilization With the Dual Active Bridge Converter. IEEE Transactions on Industrial Electronics, 2020, 67, 8944-8956.	5.2	62
60	Advanced Control Methods for Power Converters in DG Systems and Microgrids. IEEE Transactions on Industrial Electronics, 2021, 68, 5847-5862.	5.2	62
61	Dynamic consensus algorithm based distributed global efficiency optimization of a droop controlled DC microgrid. , 2014, , .		61
62	Model Predictive Control-Based Virtual Inertia Emulator for an Islanded Alternating Current Microgrid. IEEE Transactions on Industrial Electronics, 2021, 68, 7167-7177.	5.2	61
63	Modeling, stability analysis and active stabilization of multiple DC-microgrid clusters. , 2014, , .		60
64	An optimal general type-2 fuzzy controller for Urban Traffic Network. ISA Transactions, 2017, 66, 335-343.	3.1	59
65	Supervised Imitation Learning of Finite-Set Model Predictive Control Systems for Power Electronics. IEEE Transactions on Industrial Electronics, 2021, 68, 1717-1723.	5.2	58
66	Robust Frequency Regulation in Mobile Microgrids: HIL Implementation. IEEE Systems Journal, 2019, 13, 4281-4291.	2.9	57
67	Model Predictive Control of <i>LC</i> -Filtered Voltage Source Inverters With Optimal Switching Sequence. IEEE Transactions on Power Electronics, 2021, 36, 3422-3436.	5.4	56
68	Decentralized Model Predictive Control of DC Microgrids With Constant Power Load. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 451-460.	3.7	54
69	Distributed Screening of Hijacking Attacks in DC Microgrids. IEEE Transactions on Power Electronics, 2020, 35, 7574-7582.	5.4	53
70	Constrained Modulated Model-Predictive Control of an <i>LC</i> -Filtered Voltage-Source Converter. IEEE Transactions on Power Electronics, 2020, 35, 1967-1977.	5.4	52
71	Decentralized Coordinated Cyberattack Detection and Mitigation Strategy in DC Microgrids Based on Artificial Neural Networks. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 4629-4638.	3.7	51
72	Analytical Design and Performance Validation of Finite Set MPC Regulated Power Converters. IEEE Transactions on Industrial Electronics, 2019, 66, 2004-2014.	5.2	49

#	Article	IF	CITATIONS
73	An Event-Driven Resilient Control Strategy for DC Microgrids. IEEE Transactions on Power Electronics, 2020, 35, 13714-13724.	5.4	49
74	Multilayer Resilience Paradigm Against Cyber Attacks in DC Microgrids. IEEE Transactions on Power Electronics, 2021, 36, 2522-2532.	5.4	49
75	Moving Discretized Control Set Model-Predictive Control for Dual-Active Bridge With the Triple-Phase Shift. IEEE Transactions on Power Electronics, 2020, 35, 8624-8637.	5.4	47
76	False Data Injection Cyber-Attacks Mitigation in Parallel DC/DC Converters Based on Artificial Neural Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 717-721.	2.2	47
77	Software-Defined Microgrid Control for Resilience Against Denial-of-Service Attacks. IEEE Transactions on Smart Grid, 2019, 10, 5258-5268.	6.2	45
78	Hybrid Model Predictive Control of DC–DC Boost Converters With Constant Power Load. IEEE Transactions on Energy Conversion, 2021, 36, 1347-1356.	3.7	45
79	Power Conditioning of Distribution Networks via Single-Phase Electric Vehicles Equipped. IEEE Systems Journal, 2019, 13, 3433-3442.	2.9	44
80	Interconnected Autonomous AC Microgrids via Back-to-Back Converters—Part I: Small-Signal Modeling. IEEE Transactions on Power Electronics, 2020, 35, 4728-4740.	5.4	44
81	Detection and Mitigation of False Data in Cooperative DC Microgrids With Unknown Constant Power Loads. IEEE Transactions on Power Electronics, 2021, 36, 9565-9577.	5.4	44
82	Multiagent based distributed control for state-of-charge balance of distributed energy storage in DC microgrids. , 2014, , .		42
83	An Improved Fault-Tolerant Control Scheme for Cascaded H-Bridge STATCOM With Higher Attainable Balanced Line-to-Line Voltages. IEEE Transactions on Industrial Electronics, 2021, 68, 2784-2797.	5.2	42
84	Distributed consensus-based control of multiple DC-microgrids clusters. , 2014, , .		40
85	Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University. IEEE Transactions on Industry Applications, 2015, , 1-1.	3.3	40
86	A Distributed Fixed-Time Secondary Controller for DC Microgrid Clusters. IEEE Transactions on Energy Conversion, 2019, 34, 1997-2007.	3.7	39
87	Robust Quasi-Predictive Control of \$LCL\$-Filtered Grid Converters. IEEE Transactions on Power Electronics, 2020, 35, 1934-1946.	5.4	38
88	Quantitative Feedback Design-Based Robust PID Control of Voltage Mode Controlled DC-DC Boost Converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 286-290.	2.2	38
89	A Linear Inertial Response Emulation for Variable Speed Wind Turbines. IEEE Transactions on Power Systems, 2020, 35, 1198-1208.	4.6	36
90	Fuzzy-logic-based gain-scheduling control for state-of-charge balance of distributed energy storage systems for DC microgrids. , 2014, , .		35

#	Article	IF	CITATIONS
91	Composite Robust Quasi-Sliding Mode Control of DC–DC Buck Converter With Constant Power Loads. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1455-1464.	3.7	32
92	Nonlinear Model Predictive Speed Control of Electric Vehicles Represented by Linear Parameter Varying Models With Bias Terms. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 2081-2089.	3.7	31
93	Optimal planning and operation management of a ship electrical power system with energy storage system. , 2016, , .		30
94	Robust High-Rate Secondary Control of Microgrids With Mitigation of Communication Impairments. IEEE Transactions on Power Electronics, 2020, 35, 12486-12496.	5.4	30
95	Machine Learning Emulation of Model Predictive Control for Modular Multilevel Converters. IEEE Transactions on Industrial Electronics, 2021, 68, 11628-11634.	5.2	30
96	A device-level service-oriented middleware platform for self-manageable DC microgrid applications utilizing semantic-enabled distributed energy resources. International Journal of Electrical Power and Energy Systems, 2014, 54, 576-588.	3.3	29
97	Resilient Operation of Heterogeneous Sources in Cooperative DC Microgrids. IEEE Transactions on Power Electronics, 2020, 35, 12601-12605.	5.4	29
98	Optimization with system damping restoration for droop controlled DC-DC converters. , 2013, , .		28
99	A Unified Distributed Cooperative Control of DC Microgrids Using Consensus Protocol. IEEE Transactions on Smart Grid, 2021, 12, 1880-1892.	6.2	28
100	Multi-agent-based distributed state of charge balancing control for distributed energy storage units in AC microgrids. , 2015, , .		27
101	Multi Objective Modulated Model Predictive Control of Stand-Alone Voltage Source Converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2559-2571.	3.7	27
102	Improved Distributed Prescribed Finite-Time Secondary Control of Inverter-Based Microgrids: Design and Real-Time Implementation. IEEE Transactions on Industrial Electronics, 2021, 68, 11135-11145.	5.2	27
103	On Addressing the Security and Stability Issues Due to False Data Injection Attacks in DC Microgrids—An Adaptive Observer Approach. IEEE Transactions on Power Electronics, 2022, 37, 2801-2814.	5.4	26
104	A Novel Operation Scheme for Modular Multilevel Converter With Enhanced Ride-Through Capability of Submodule Faults. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1258-1268.	3.7	25
105	Optimal utilization of microgrids supplemented with battery energy storage systems in grid support applications. , 2015, , .		23
106	Adaptive Control Design for Autonomous Operation of Multiple Energy Storage Systems in Power Smoothing Applications. IEEE Transactions on Industrial Electronics, 2018, 65, 6612-6624.	5.2	23
107	TS Fuzzy Model-Based Controller Design for a Class of Nonlinear Systems Including Nonsmooth Functions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 233-244.	5.9	21
108	Hierarchical control with virtual resistance optimization for efficiency enhancement and		20

State-of-Charge balancing in DC microgrids. , 2015, , .

20

#	Article	IF	CITATIONS
109	An Instantaneous Event-Triggered Hz–Watt Control for Microgrids. IEEE Transactions on Power Systems, 2019, 34, 3616-3625.	4.6	20
110	Machine Learning Based Operating Region Extension of Modular Multilevel Converters Under Unbalanced Grid Faults. IEEE Transactions on Industrial Electronics, 2021, 68, 4554-4560.	5.2	20
111	Impedance-Based Stability Evaluation for Multibus DC Microgrid Without Constraints on Subsystems. IEEE Transactions on Power Electronics, 2022, 37, 932-943.	5.4	20
112	Resonance damping techniques for grid-connected voltage source converters with LCL filters — A review. , 2014, , .		19
113	FS-MPC Based Thermal Stress Balancing and Reliability Analysis for NPC Converters. IEEE Open Journal of Power Electronics, 2021, 2, 124-137.	4.0	19
114	An Analysis of Multi Objective Energy Scheduling in PV-BESS System Under Prediction Uncertainty. IEEE Transactions on Energy Conversion, 2021, 36, 2276-2286.	3.7	19
115	Sensorless Control of DC Microgrid Based on Artificial Intelligence. IEEE Transactions on Energy Conversion, 2021, 36, 2319-2329.	3.7	18
116	A Novel Sliding-Discrete-Control-Set Modulated Model Predictive Control for Modular Multilevel Converter. IEEE Access, 2021, 9, 10316-10327.	2.6	17
117	Decentralized Frequency Control of AC Microgrids: An Estimation-Based Consensus Approach. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5183-5191.	3.7	16
118	Supervisory Energy-Management Systems for Microgrids: Modeling and Formal Verification. IEEE Industrial Electronics Magazine, 2019, 13, 26-37.	2.3	15
119	Optimal Filter Design for Power Converters Regulated by FCS-MPC in the MEA. IEEE Transactions on Power Electronics, 2021, 36, 3258-3268.	5.4	15
120	Battery state-of-charge and parameter estimation algorithm based on Kalman filter. , 2013, , .		14
121	Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system. , 2015, , .		14
122	Voltage scheduling droop control for State-of-Charge balance of distributed energy storage in DC microgrids. , 2014, , .		13
123	Cyber-Resilient Sliding-Mode Consensus Secondary Control Scheme for Islanded AC Microgrids. IEEE Transactions on Power Electronics, 2022, 37, 6074-6089.	5.4	13
124	Coordinated power control strategy based on primary-frequency-signaling for islanded microgrids. , 2013, , .		12
125	Advanced Control Methods for Power Converters in Distributed Generation Systems and Microgrids. IEEE Transactions on Industrial Electronics, 2019, 66, 8866-8869.	5.2	12
126	Statistical Model Checking for Finite-Set Model Predictive Control Converters: A Tutorial on Modeling and Performance Verification. IEEE Industrial Electronics Magazine, 2019, 13, 6-15.	2.3	12

#	Article	IF	CITATIONS
127	An Emergency Active and Reactive Power Exchange Solution for Interconnected Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5206-5218.	3.7	12
128	Intelligent Multiobjective NSBGA-II Control of Power Converters in DC Microgrids. IEEE Transactions on Industrial Electronics, 2021, 68, 10806-10814.	5.2	12
129	Modeling and sensitivity analysis of consensus algorithm based distributed hierarchical control for DC microgrids. , 2015, , .		11
130	Clustering-Based Penalty Signal Design for Flexibility Utilization. IEEE Access, 2020, 8, 208850-208860.	2.6	11
131	Decentralized control for renewable DC Microgrid with composite energy storage system and UC voltage restoration connected to the grid. , 2016, , .		10
132	State-Space Modeling Techniques of Emerging Grid-Connected Converters. Energies, 2020, 13, 4824.	1.6	10
133	Power flow analysis for DC voltage droop controlled DC microgrids. , 2014, , .		9
134	Stored energy balance for distributed PV-based active generators in an AC microgrid. , 2015, , .		9
135	Distributed low voltage ride-through operation of power converters in grid-connected microgrids under voltage sags. , 2015, , .		8
136	Modelling different scenarios of Virtual Power Plant operating possibilities. , 2010, , .		6
137	Dynamic consensus algorithm based distributed voltage harmonic compensation in islanded microgrids. , 2015, , .		6
138	A Model Predictive Control Considering Parameters and System Uncertainties for Suppressing Low-Frequency Oscillations of Traction Dual Rectifiers. IEEE Transactions on Transportation Electrification, 2021, 7, 1031-1046.	5.3	6
139	Control of single-phase islanded PV/battery streetlight cluster based on power-line signaling. , 2013, , .		5
140	Coordinated primary and secondary control with frequency-bus-signaling for distributed generation and storage in islanded microgrids. , 2013, , .		5
141	Guest Editorial Special Issue on Topology, Modeling, Control, and Reliability of Bidirectional DC/DC Converters in DC Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1188-1191.	3.7	5
142	A novel robust communication algorithm for distributed secondary control of islanded MicroGrids. , 2013, , .		4
143	A single phase seven-level grid-connected inverter based on three reference SPWM strategy. , 2014, , .		4
144	Modeling and control of flexible HEV charging station upgraded with flywheel energy storage. , 2014,		4

9

,.

#	Article	IF	CITATIONS
145	Modular power architectures for microgrid clusters. , 2014, , .		4
146	Zonal protection of DC swarm microgrids using a novel multi-terminal grid interface with decentralized control. , 2015, , .		4
147	Two-level control for fast electrical vehicle charging stations with multi flywheel energy storage system. , 2015, , .		4
148	Recent Advances in Control, Analysis and Design of DC Distribution Systems and Microgrids. Electric Power Components and Systems, 2017, 45, 1031-1031.	1.0	4
149	Distributed cooperative control of multi flywheel energy storage system for electrical vehicle fast charging stations. , 2015, , .		3
150	Stability constrained efficiency optimization for droop controlled DC-DC conversion system. , 2013, , .		2
151	Flexible local load controller for fast electric vehicle charging station supplemented with flywheel energy storage system. , 2014, , .		2
152	Control of single-phase islanded PV/battery minigrids based on power-line signaling. , 2014, , .		2
153	Reactive power support of electrical vehicle charging station upgraded with flywheel energy storage system. , 2015, , .		2
154	Four-quadrant bidirectional operation of charging station upgraded with flywheel energy storage system. , 2016, , .		2
155	Agent-based distributed unbalance compensation for optimal power quality in islanded microgrids. , 2014, , .		1
156	Distributed bus signaling control for a DC charging station with multi paralleled flywheel energy storage system. , 2015, , .		1
157	Individually Regulated Dual-Output IPT System Based on Current-Mode Switching Cells. IEEE Transactions on Industrial Electronics, 2021, 68, 12930-12934.	5.2	1
158	Provision of flexible load control by multi-flywheel-energy-storage system in electrical vehicle charging stations. , 2015, , .		0
159	Dynamic consensus algorithm based distributed unbalance compensation in islanded microgrids. , 2015, , .		0