
Kumaravel Vignesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9457853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, 2019, 244, 1021-1064.	10.8	676
2	Photoelectrochemical Conversion of Carbon Dioxide (CO ₂) into Fuels and Value-Added Products. ACS Energy Letters, 2020, 5, 486-519.	8.8	361
3	Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 2020, 10, 969.	1.6	269
4	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	1.6	214
5	Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Applied Sciences (Switzerland), 2018, 8, 2067.	1.3	149
6	Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules. Renewable and Sustainable Energy Reviews, 2020, 128, 109911.	8.2	129
7	Enhanced photocatalytic performance of transition metal doped Bi2O3 nanoparticles under visible light irradiation. Ceramics International, 2014, 40, 101-107.	2.3	122
8	Photocatalytic activity of magnetically recoverable MnFe2O4/g-C3N4/TiO2 nanocomposite under simulated solar light irradiation. Journal of Molecular Catalysis A, 2014, 395, 373-383.	4.8	112
9	Visible light responsive photocatalytic applications of transition metal (M=Cu, Ni and Co) doped α-Fe2O3 nanoparticles. Journal of Environmental Chemical Engineering, 2014, 2, 1956-1968.	3.3	107
10	Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants. Chemical Engineering Journal, 2021, 416, 129071.	6.6	106
11	Photocatalytic activity of AgI sensitized ZnO nanoparticles under visible light irradiation. Powder Technology, 2012, 224, 331-337.	2.1	98
12	Photoreduction of Cr(VI) in water using Bi2O3–ZrO2 nanocomposite under visible light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 149-157.	1.7	78
13	Fabrication of CdS and CuWO4 modified TiO2 nanoparticles and its photocatalytic activity under visible light irradiation. Journal of Industrial and Engineering Chemistry, 2014, 20, 435-443.	2.9	71
14	Visible light assisted photocatalytic performance of Ni and Th co-doped ZnO nanoparticles for the degradation of methylene blue dye. Journal of Industrial and Engineering Chemistry, 2014, 20, 3826-3833.	2.9	69
15	Indium-Doped TiO ₂ Photocatalysts with High-Temperature Anatase Stability. Journal of Physical Chemistry C, 2019, 123, 21083-21096.	1.5	69
16	Photocatalytic performance of Ag doped SnO2 nanoparticles modifiedÂwithÂcurcumin. Solid State Sciences, 2013, 21, 91-99.	1.5	65
17	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869.	10.2	64
18	Facile synthesis, characterization and recyclable photocatalytic activity of Ag2WO4@g-C3N4. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 199, 30-36.	1.7	63

KUMARAVEL VIGNESH

#	Article	IF	CITATIONS
19	Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. Chemosphere, 2021, 269, 129325.	4.2	63
20	A Short Review on Hydrogen, Biofuel, and Electricity Production Using Seawater as a Medium. Energy & Fuels, 2018, 32, 6423-6437.	2.5	53
21	Visible light assisted photodecolorization of eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles. Applied Surface Science, 2012, 258, 4592-4600.	3.1	51
22	Removal of congo red from water using quercetin modified α-Fe2O3 nanoparticles as effective nanoadsorbent. Materials Chemistry and Physics, 2016, 180, 53-65.	2.0	50
23	Photocatalytic degradation of erythromycin under visible light by zinc phthalocyanine-modified titania nanoparticles. Materials Science in Semiconductor Processing, 2014, 23, 98-103.	1.9	49
24	Methane formation from photoreduction of CO2 with water using TiO2 including Ni ingredient. Fuel, 2015, 143, 570-576.	3.4	49
25	Fe ₃ O ₄ –Ag ₂ WO ₄ : facile synthesis, characterization and visible light assisted photocatalytic activity. New Journal of Chemistry, 2017, 41, 11722-11730.	1.4	43
26	Meso-porous ZnO nano-triangles @ graphitic-C 3 N 4 nano-foils: Fabrication and Recyclable photocatalytic activity. Separation and Purification Technology, 2015, 147, 257-265.	3.9	42
27	Mo doped TiO ₂ : impact on oxygen vacancies, anatase phase stability and photocatalytic activity. JPhys Materials, 2020, 3, 025008.	1.8	42
28	Improved CO ₂ adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO. New Journal of Chemistry, 2016, 40, 231-237.	1.4	40
29	Fabrication of meso-porous BiOI sensitized zirconia nanoparticles with enhanced photocatalytic activity under simulated solar light irradiation. Applied Surface Science, 2015, 324, 652-661.	3.1	36
30	Improved super-hydrophobicity of eco-friendly coating from palm oil fuel ash (POFA) waste. Surface and Coatings Technology, 2018, 337, 126-135.	2.2	32
31	Visible light assisted photocatalytic activity of TiO2–metal vanadate (M=Sr, Ag and Cd) nanocomposites. Materials Science in Semiconductor Processing, 2013, 16, 1521-1530.	1.9	31
32	Designing of YVO ₄ supported β-AgI nano-photocatalyst with improved stability. RSC Advances, 2015, 5, 576-585.	1.7	31
33	Bacteriostatic Activity of LLDPE Nanocomposite Embedded with Sol–Gel Synthesized TiO2/ZnO Coupled Oxides at Various Ratios. Polymers, 2018, 10, 878.	2.0	26
34	Effect of chalcogens (S, Se, and Te) on the anatase phase stability and photocatalytic antimicrobial activity of TiO2. Materials Today: Proceedings, 2020, 33, 2458-2464.	0.9	22
35	Impact of structure, doping and defect-engineering in 2D materials on CO ₂ capture and conversion. Reaction Chemistry and Engineering, 2021, 6, 1701-1738.	1.9	22
36	Biosorption of nickel ions using fungal biomass Penicillium sp. MRF1 for the treatment of nickel electroplating industrial effluent. Biomass Conversion and Biorefinery, 2022, 12, 1059-1068.	2.9	19

#	Article	IF	CITATIONS
37	Effect of LI-IIO <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>1.9</td><td>17</td></mml:math>	1.9	17
38	Improved Adhesion of Nonfluorinated ZnO Nanotriangle Superhydrophobic Layer on Glass Surface by Spray-Coating Method. Journal of Nanomaterials, 2018, 2018, 1-11.	1.5	15
39	Pyrolysis Kinetic Modeling of a Poly(ethylene-co-vinyl acetate) Encapsulant Found in Waste Photovoltaic Modules. Industrial & Engineering Chemistry Research, 2021, 60, 13492-13504.	1.8	13
40	Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents. Applied Surface Science, 2016, 363, 586-592.	3.1	12
41	Ca(OH) ₂ nano-pods: investigation on the effect of solvent ratio on morphology and CO ₂ adsorption capacity. RSC Advances, 2016, 6, 36031-36038.	1.7	10
42	Exploration of Ag decoration and Bi doping on the photocatalytic activity αâ€Fe ₂ O ₃ under simulated solar light irradiation. Canadian Journal of Chemical Engineering, 2018, 96, 1713-1722.	0.9	9
43	Heterojunction catalysts g-C3N4/-3ZnO-c-Zn2Ti3O8 with highly enhanced visible-light-driven photocatalytic activity. Journal of Sol-Gel Science and Technology, 2020, 93, 354-370.	1.1	9
44	Plasmon-Induced Hot Electron Amplification and Effective Charge Separation by Au Nanoparticles Sandwiched between Copper Titanium Phosphate Nanosheets and Improved Carbon Dioxide Conversion to Methane. ACS Sustainable Chemistry and Engineering, 2020, 8, 18646-18660.	3.2	9
45	Facile synthesis of meso-porous ZnO nano-triangular prisms with enhanced photocatalytic activity. RSC Advances, 2015, 5, 30120-30124.	1.7	7
46	Solar light-induced photocatalytic degradation of pharmaceuticals in wastewater treatment. , 2020, , 65-78.		7
47	Fabrication of Hydrophobic Coatings Using Sugarcane Bagasse Waste Ash as Silica Source. Applied Sciences (Switzerland), 2019, 9, 190.	1.3	6
48	Global opportunities and challenges on net-zero CO ₂ emissions towards a sustainable future. Reaction Chemistry and Engineering, 2021, 6, 2226-2247.	1.9	6
49	New Insights into Crystal Defects, Oxygen Vacancies, and Phase Transition of Ir-TiO2. Journal of Physical Chemistry C, 2021, 125, 23548-23560.	1.5	6
50	Application of Nanoparticles for Self-Cleaning Surfaces. Environmental Chemistry for A Sustainable World, 2019, , 471-498.	0.3	5
51	Photocatalytic Hydrogen Evolution. Catalysts, 2020, 10, 492.	1.6	5
52	Unravelling the Impact of Ta Doping on the Electronic and Structural Properties of Titania: A Combined Theoretical and Experimental Approach. Journal of Physical Chemistry C, 2022, 126, 2285-2297.	1.5	2
53	TiO2 based Z-scheme photocatalysts for energy and environmental applications. , 2021, , 257-282.		1