
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9457409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic lipid nanovehicles synergize the controlled thermal release of chemotherapeutics with magnetic ablation while enabling non-invasive monitoring by MRI for melanoma theranostics. Bioactive Materials, 2022, 8, 153-164.	8.6	20
2	Graphene-encapsulated magnetic nanoparticles for safe and steady delivery of ferulic acid in diabetic mice. Chemical Engineering Journal, 2022, 435, 134466.	6.6	11
3	Gb3/cd77 Is a Predictive Marker and Promising Therapeutic Target for Head and Neck Cancer. Biomedicines, 2022, 10, 732.	1.4	3
4	Free-labeled nanoclay intracellular uptake tracking by confocal Raman imaging. Applied Surface Science, 2021, 537, 147870.	3.1	6
5	The unpredictable carbon nanotube biocorona and a functionalization method to prevent protein biofouling. Journal of Nanobiotechnology, 2021, 19, 129.	4.2	8
6	Targeting Nanomaterials to Head and Neck Cancer Cells Using a Fragment of the Shiga Toxin as a Potent Natural Ligand. Cancers, 2021, 13, 4920.	1.7	11
7	Solid Lipid Particles for Lung Metastasis Treatment. Pharmaceutics, 2021, 13, 93.	2.0	8
8	Development of an accurate method for dispersion and quantification of carbon nanotubes in biological media. Analytical Methods, 2020, 12, 5642-5647.	1.3	2
9	Design of Polymeric and Biocompatible Delivery Systems by Dissolving Mesoporous Silica Templates. International Journal of Molecular Sciences, 2020, 21, 9573.	1.8	9
10	Microtubule cytoskeleton-disrupting activity of MWCNTs: applications in cancer treatment. Journal of Nanobiotechnology, 2020, 18, 181.	4.2	16
11	Engineering Sub-Cellular Targeting Strategies to Enhance Safe Cytosolic Silica Particle Dissolution in Cells. Pharmaceutics, 2020, 12, 487.	2.0	9
12	A custom-made functionalization method to control the biological identity of nanomaterials. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102268.	1.7	7
13	Dye-doped biodegradable nanoparticle SiO ₂ coating on zinc- and iron-oxide nanoparticles to improve biocompatibility and for <i>in vivo</i> imaging studies. Nanoscale, 2020, 12, 6164-6175.	2.8	22
14	Multi-walled carbon nanotubes complement the anti-tumoral effect of 5-Fluorouracil. Oncotarget, 2019, 10, 2022-2029.	0.8	25
15	<p>Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 3389-3401.	3.3	103
16	Effect of Size, Shape, and Composition on the Interaction of Different Nanomaterials with HeLa Cells. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	19
17	Drug Nanoparticle Stability Assessment Using Isothermal and Nonisothermal Approaches. Journal of Nanomaterials, 2018, 2018, 1-7.	1.5	5
18	Biodegradable multi-walled carbon nanotubes trigger anti-tumoral effects. Nanoscale, 2018, 10, 11013-11020.	2.8	23

#	Article	IF	CITATIONS
19	A Biomimetic Escape Strategy for Cytoplasm Invasion by Synthetic Particles. Angewandte Chemie, 2017, 129, 13924-13928.	1.6	4
20	A Biomimetic Escape Strategy for Cytoplasm Invasion by Synthetic Particles. Angewandte Chemie - International Edition, 2017, 56, 13736-13740.	7.2	17
21	Potassiumâ€lonâ€Selective Fluorescent Sensors To Detect Cereulide, the Emetic Toxin of <i>B.â€cereus</i> , in Food Samples and HeLa Cells. ChemistryOpen, 2017, 6, 562-570.	0.9	11
22	Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials, 2017, 114, 62-70.	5.7	102
23	Carbon nanotubes gathered onto silica particles lose their biomimetic properties with the cytoskeleton becoming biocompatible. International Journal of Nanomedicine, 2017, Volume 12, 6317-6328.	3.3	22
24	Multiwalled Carbon Nanotubes Inhibit Tumor Progression in a Mouse Model. Advanced Healthcare Materials, 2016, 5, 1080-1087.	3.9	30
25	Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. Nanoscale, 2016, 8, 10963-10973.	2.8	57
26	A fast, reliable and cost-effective method to generate tumor organs for therapy screening in vivo. Biomedical Physics and Engineering Express, 2016, 2, 035009.	0.6	2
27	Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes. Advanced Healthcare Materials, 2015, 4, 1640-1644.	3.9	29
28	Anti-Cancer Cytotoxic Effects of Multiwalled Carbon Nanotubes. Current Pharmaceutical Design, 2015, 21, 1920-1929.	0.9	25
29	Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH. Frontiers in Cellular and Infection Microbiology, 2014, 4, 22.	1.8	25
30	Multiwalled Carbon Nanotubes Hinder Microglia Function Interfering with Cell Migration and Phagocytosis. Advanced Healthcare Materials, 2014, 3, 424-432.	3.9	42
31	Dissociation of innate immune responses in microglia infected with Listeria monocytogenes. Clia, 2014, 62, 233-246.	2.5	14
32	Nanotube interactions with microtubules: implications for cancer medicine. Nanomedicine, 2014, 9, 1581-1588.	1.7	24
33	Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics. Cellular and Molecular Life Sciences, 2013, 70, 357-371.	2.4	20
34	Multiwalled Carbon Nanotubes Display Microtubule Biomimetic Properties <i>in Vivo</i> , Enhancing Microtubule Assembly and Stabilization. ACS Nano, 2012, 6, 6614-6625.	7.3	71
35	The Solution Structure of the N-Terminal Domain of Human Tubulin Binding Cofactor C Reveals a Platform for Tubulin Interaction. PLoS ONE, 2011, 6, e25912.	1.1	12
36	TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Reports, 2010, 11, 194-200.	2.0	50

#	Article	IF	CITATIONS
37	Emerging roles for tubulin folding cofactors at the centrosome. Communicative and Integrative Biology, 2010, 3, 306-308.	0.6	5
38	Nondenaturing Electrophoresis as a Tool to Investigate Tubulin Complexes. Methods in Cell Biology, 2010, 95, 59-75.	0.5	9
39	TBCD Links Centriologenesis, Spindle Microtubule Dynamics, and Midbody Abscission in Human Cells. PLoS ONE, 2010, 5, e8846.	1.1	27
40	Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states. Experimental Cell Research, 2009, 315, 535-541.	1.2	16
41	Isolation of Microtubules and Microtubule Proteins. Current Protocols in Cell Biology, 2008, 39, Unit 3.29.	2.3	17
42	Tubulin cofactor B plays a role in the neuronal growth cone. Journal of Neurochemistry, 2007, 100, 070209222715087-???.	2.1	49
43	Role of cofactors B (TBCB) and E (TBCE) in tubulin heterodimer dissociation. Experimental Cell Research, 2007, 313, 425-436.	1.2	64
44	Native tubulin-folding cofactor E purified from baculovirus-infected Sf9 cells dissociates tubulin dimers. Protein Expression and Purification, 2006, 49, 196-202.	0.6	18
45	Expression of an altered form of tau in Sf9 insect cells results in the assembly of polymers resembling Alzheimer's paired helical filaments. Brain Research, 2004, 1007, 57-64.	1.1	15
46	Dynactin is required for bidirectional organelle transport. Journal of Cell Biology, 2003, 160, 297-301.	2.3	281
47	Review: Postchaperonin Tubulin Folding Cofactors and Their Role in Microtubule Dynamics. Journal of Structural Biology, 2001, 135, 219-229.	1.3	134
48	Tubulin folding cofactor D is a microtubule destabilizing protein. FEBS Letters, 2000, 470, 93-95.	1.3	61
49	Expression of unphosphorylated class III β-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation. European Journal of Neuroscience, 1999, 11, 516-527.	1.2	82
50	Regulated expression of p14 (cofactor A) during spermatogenesis. Cytoskeleton, 1999, 43, 243-254.	4.4	23
51	Characterization of Tubulin Isotype-Specific Antibodies by Electrophoretic Mobility Shift Assay. BioTechniques, 1998, 25, 940-942.	0.8	2
52	Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. Journal of Comparative Neurology, 1998, 399, 94-100.	0.9	16
53	Characterization of a Putative Novel Type of Oligodendrocyte in Cultures from Rat Spinal Cord. European Journal of Neuroscience, 1997, 9, 2213-2217.	1.2	8
54	Hoxb-8 gain-of-function transgenic mice exhibit alterations in the peripheral nervous system. Journal of Neuroscience Methods, 1997, 71, 11-18.	1.3	13

#	Article	IF	CITATIONS
55	Oligodendrocyte progenitors in the embryonic spinal cord express DM-20. Neuropathology and Applied Neurobiology, 1996, 22, 188-198.	1.8	48
56	Evidence that some oligodendrocyte progenitors in the developing optic pathway express theplp gene. , 1996, 18, 282-292.		14
57	Oligodendrocyte progenitors in the embryonic spinal cord express DM-20. Neuropathology and Applied Neurobiology, 1996, 22, 188-198.	1.8	7
58	Oligodendrocyte progenitors in the embryonic spinal cord express DM-20. Neuropathology and Applied Neurobiology, 1996, 22, 188-98.	1.8	14
59	Myelin mutants: New models and new observations. Microscopy Research and Technique, 1995, 32, 183-203.	1.2	38
60	O-2A progenitors of the mouse optic nerve exhibit a developmental pattern of antigen expression different from the rat. Glia, 1995, 15, 95-104.	2.5	38
61	Oligodendrocyte development and differentiation in the rumpshaker mutation. Glia, 1993, 9, 146-156.	2.5	35
62	Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature, 1992, 358, 758-761.	13.7	214
63	Rumpshaker: An X-linked mutation causing hypomyelination: Developmental differences in myelination and glial cells between the optic nerve and spinal cord. Glia, 1992, 5, 161-170.	2.5	54
64	Developmental expression of major myelin protein genes in the CNS of X-Linked hypomyelinating mutant rumpshaker. Journal of Neuroscience Research, 1992, 33, 205-217.	1.3	40
65	Rumpshaker: an X-linked mutation affecting CNS myelination. A study of the female heterozygote. Neuropathology and Applied Neurobiology, 1991, 17, 323-334.	1.8	15