
Jannik Bruun Larsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9457393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Origami Calibrators for Counting Fluorophores on Single Particles by Flow Cytometry. Small Methods, 2022, 6, e2101364.	8.6	1
2	Quantifying the heterogeneity of enzymatic dePEGylation of liposomal nanocarrier systems. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 171, 80-89.	4.3	6
3	Unravelling Heterogeneities in Complement and Antibody Opsonization of Individual Liposomes as a Function of Surface Architecture. Small, 2022, 18, e2106529.	10.0	10
4	Mechanisms of selective monocyte targeting by liposomes functionalized with a cationic, arginine-rich lipopeptide. Acta Biomaterialia, 2022, 144, 96-108.	8.3	7
5	Imaging therapeutic peptide transport across intestinal barriers. RSC Chemical Biology, 2021, 2, 1115-1143.	4.1	10
6	Effect of apoA-I PEGylation on the Biological Fate of Biomimetic High-Density Lipoproteins. ACS Omega, 2021, 6, 871-880.	3.5	2
7	Applying flow cytometry to identify the modes of action of membrane-active peptides in a label-free and high-throughput fashion. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1864, 183820.	2.6	4
8	Compositional inhomogeneity of drug delivery liposomes quantified at the single liposome level. Acta Biomaterialia, 2020, 118, 207-214.	8.3	12
9	Cell targeting strategy affects the intracellular trafficking of liposomes altering loaded doxorubicin release kinetics and efficacy in endothelial cells. International Journal of Pharmaceutics, 2020, 588, 119715.	5.2	5
10	How Membrane Geometry Regulates Protein Sorting Independently of Mean Curvature. ACS Central Science, 2020, 6, 1159-1168.	11.3	29
11	Unique Calibrators Derived from Fluorescenceâ€Activated Nanoparticle Sorting for Flow Cytometric Size Estimation of Artificial Vesicles: Possibilities and Limitations. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 917-924.	1.5	12
12	PEGâ€Lipid Post Insertion into Drug Delivery Liposomes Quantified at the Single Liposome Level. Advanced Materials Interfaces, 2019, 6, 1801807.	3.7	17
13	A Quantitative Fluorescence Microscopy-based Single Liposome Assay for Detecting the Compositional Inhomogeneity Between Individual Liposomes. Journal of Visualized Experiments, 2019, , .	0.3	1
14	Quantitative Methods for Investigating Dissociation of Fluorescently Labeled Lipids from Drug Delivery Liposomes. , 2019, , 333-359.		3
15	Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies. Nanoscale, 2018, 10, 22720-22724.	5.6	60
16	An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1. Cell Reports, 2018, 23, 2056-2069.	6.4	37
17	Multicompartment Artificial Organelles Conducting Enzymatic Cascade Reactions inside Cells. ACS Applied Materials & Interfaces, 2017, 9, 15907-15921.	8.0	65
18	Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment. Biophysical Journal, 2017, 113, 1269-1279.	0.5	26

JANNIK BRUUN LARSEN

#	Article	IF	CITATIONS
19	tN-Ras, Synaptotagmin1 C2Ab, Annexinb12 and Amphiphysin NBAR can Discriminate Spherical from Cylindrical Membrane Curvature. Biophysical Journal, 2016, 110, 357a.	0.5	0
20	N-RAS Lipid Anchor Adsorption to Membranes as a Function of Lipid Composition and Curvature. Biophysical Journal, 2016, 110, 579a.	0.5	1
21	Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nature Chemical Biology, 2015, 11, 192-194.	8.0	108
22	Membrane curvature bends the laws of physics and chemistry. Nature Chemical Biology, 2015, 11, 822-825.	8.0	75
23	How Membrane Curvature Drives the Up-Concentration of N-Ras Proteins to Ordered Lipid Domains : Correlation of In Vivo and In Vitro Experiments with Mean Field Theory Calculations and Coarse Grain Simulations. Biophysical Journal, 2014, 106, 713a.	0.5	0
24	Fractional Binding: A Molecular Analog-To-Digital Converter in Ca++ Regulated Vesicle Differentiation. Biophysical Journal, 2014, 106, 529a-530a.	0.5	0
25	Lipid-Anchored Ras is Sorted by Membrane Curvature Both InÂVitro and in Living Cells. Biophysical Journal, 2013, 104, 96a.	0.5	0
26	Sorting of tN-Ras by Membrane Curvature in Lipid Vesicles and Tubes. Biophysical Journal, 2013, 104, 549a.	0.5	0
27	Influence of the Preparation Route on the Supramolecular Organization of Lipids in a Vesicular System. Journal of the American Chemical Society, 2012, 134, 1918-1921.	13.7	68
28	Observation of Inhomogeneity in the Lipid Composition of Individual Nanoscale Liposomes. Biophysical Journal, 2012, 102, 426a.	0.5	2
29	Observation of Inhomogeneity in the Lipid Composition of Individual Nanoscale Liposomes. Journal of the American Chemical Society, 2011, 133, 10685-10687.	13.7	108
30	How curved membranes recruit amphipathic helices and protein anchoring motifs. Nature Chemical Biology, 2009, 5, 835-841.	8.0	352