
Jing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9457325/publications.pdf Version: 2024-02-01

ΙΙΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Asymmetric Zinc Porphyrin Derivative-Sensitized Graphitic Carbon Nitride for Efficient Visible-Light-Driven H ₂ Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 7549-7556.	6.7	66
2	Ru(II) complexes bearing 2,6-bis(benzimidazole-2-yl)pyridine ligands: A new class of catalysts for efficient dehydrogenation of primary alcohols to carboxylic acids and H2 in the alcohol/CsOH system. Journal of Organometallic Chemistry, 2017, 830, 11-18.	1.8	57
3	Airâ€stable Ruthenium(II)â€NNN Pincer Complexes for the Efficient Coupling of Aromatic Diamines and Alcohols to 1 <i>H</i> â€benzo[<i>d</i>]imidazoles with the Liberation of H ₂ . ChemCatChem, 2018, 10, 1607-1613.	3.7	45
4	Porphyrin-Based Conjugated Polymers as Intrinsic Semiconducting Photocatalysts for Robust H ₂ Generation under Visible Light. ACS Applied Energy Materials, 2019, 2, 5665-5676.	5.1	39
5	Ni(<scp>ii</scp>)–N′NN′ pincer complexes catalyzed dehydrogenation of primary alcohols to carboxylic acids and H ₂ accompanied by alcohol etherification. Catalysis Science and Technology, 2017, 7, 2506-2511.	4.1	38
6	Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H ₂ production activity. Dalton Transactions, 2017, 46, 8219-8228.	3.3	36
7	Facile Preparation Process of NiCoP–NiCoSe ₂ Nano-Bilayer Films for Oxygen Evolution Reaction with High Efficiency and Long Duration. ACS Sustainable Chemistry and Engineering, 2020, 8, 1240-1251.	6.7	29
8	Oxidant-free synthesis of benzimidazoles from alcohols and aromatic diamines catalysed by new Ru(<scp>ii</scp>)-PNS(O) pincer complexes. Dalton Transactions, 2017, 46, 15012-15022.	3.3	28
9	Brookite TiO ₂ Nanoparticles Decorated with Ag/MnO _{<i>x</i>} Dual Cocatalysts for Remarkably Boosted Photocatalytic Performance of the CO ₂ Reduction Reaction. Langmuir, 2021, 37, 12487-12500.	3.5	14
10	Ruthenium(II) Pincer Complex Bearing N′NN′―and ONOâ€Type Ligands as a Titania Sensitizer for Efficient and Stable Visibleâ€Lightâ€Driven Hydrogen Production. ChemPhotoChem, 2018, 2, 765-772.	3.0	9
11	Synthesis of Conjugated Main-Chain Ferrocene-Containing Polymers through Melt-State Polymerization. Organometallics, 2019, 38, 2972-2978.	2.3	9
12	Efficient CO ₂ reduction over a Ru-pincer complex/TiO ₂ hybrid photocatalyst <i>via</i> direct Z-scheme mechanism. Catalysis Science and Technology, 2022, 12, 1637-1650.	4.1	8
13	Synthesis of Metal-Containing Poly(thiophene methines) via Solid- and Melt-State Polymerization and Their Related Applications as Highly Sensitive Ni ²⁺ Chemosensors. Organometallics, 2019, 38, 647-653.	2.3	7
14	Developing strong NIR absorption materials through linear planar π-conjugated cyclopalladated complex dimers. Dalton Transactions, 2021, 50, 1344-1348.	3.3	7
15	New Ni(II) complexes based on N′NN′ pincer ligands: syntheses, structures and B–F cleavage of BF ₄ ^{â^'} promoted by a di-cationic Ni(II) center. Journal of Coordination Chemistry, 2016, 69, 2353-2363.	2.2	3
16	TiO ₂ modified with a Ru(<scp>ii</scp>)–N′NN′ 8-hydroxyquinolyl complex for efficient gaseous photoreduction of CO ₂ . Catalysis Science and Technology, 2018, 8, 2098-2103.	4.1	3
17	Solution-Processable Cu(II) Phthalocyanine Derivative as Dopant-Free Hole Transport Layer for Efficient and Low-Cost Rutile TiO ₂ Array-Based Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	2