
Wayne R Curtis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/945693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO2 supplementation eliminates sugar-rich media requirement for plant propagation using a simple inexpensive temporary immersion photobioreactor. Plant Cell, Tissue and Organ Culture, 2022, 150, 57-71.	1.2	3
2	Preserved and variable spatial hemical changes of lipids across tomato leaves in response to central vein wounding reveals potential origin of linolenic acid in signal transduction cascade. Plant-Environment Interactions, 2021, 2, 28-35.	0.7	4
3	Genome analysis of alginate synthesizing Pseudomonas aeruginosa strain SW1 isolated from degraded seaweeds. Antonie Van Leeuwenhoek, 2021, 114, 2205-2217.	0.7	3
4	Characterization of Local and Systemic Impact of Whitefly (Bemisia tabaci) Feeding and Whitefly-Transmitted Tomato Mottle Virus Infection on Tomato Leaves by Comprehensive Proteomics. International Journal of Molecular Sciences, 2020, 21, 7241.	1.8	6
5	Phloem Exudate Protein Profiles during Drought and Recovery Reveal Abiotic Stress Responses in Tomato Vasculature. International Journal of Molecular Sciences, 2020, 21, 4461.	1.8	13
6	Metabolic Engineering Strategies of Industrial Hemp (Cannabis sativa L.): A Brief Review of the Advances and Challenges. Frontiers in Plant Science, 2020, 11, 580621.	1.7	24
7	Effect of Root Morphology on Reactor Design and Operation for Production of Chemicals. , 2020, , 151-168.		3
8	Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion. Biotechnology Letters, 2017, 39, 1747-1755.	1.1	19
9	A preliminary implementation of metabolic-based pH control to reduce CO2 usage in outdoor flat-panel photobioreactor cultivation of Nannochloropsis oceanica microalgae. Algal Research, 2016, 18, 288-295.	2.4	10
10	A temporary immersion plant propagation bioreactor with decoupled gas and liquid flows for enhanced control of gas phase. Biotechnology Progress, 2016, 32, 337-345.	1.3	9
11	Expression and characterization of alkaline protease from the metagenomic library of tannery activated sludge. Journal of Bioscience and Bioengineering, 2016, 122, 694-700.	1.1	31
12	Proton stoichiometric imbalance during algae photosynthetic growth on various nitrogen sources: toward metabolic pH control. Journal of Applied Phycology, 2016, 28, 43-52.	1.5	37
13	Production of Biofuel-Related Isoprenoids Derived from Botryococcus braunii Algae. Springer Protocols, 2015, , 141-152.	0.1	1
14	Triterpene hydrocarbon production engineered into a metabolically versatile host— <i>Rhodobacter capsulatus</i> . Biotechnology and Bioengineering, 2015, 112, 1523-1532.	1.7	42
15	A Rapid and Economical Method for Efficient DNA Extraction from Diverse Soils Suitable for Metagenomic Applications. PLoS ONE, 2015, 10, e0132441.	1.1	44
16	Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans. Applied and Environmental Microbiology, 2015, 81, 5440-5448.	1.4	20
17	Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins. Protein Expression and Purification, 2015, 115, 109-117.	0.6	10
18	Scale-up of transgenic tobacco cells that express intimin of enterohemorrhagic Escherichia coli O157:H7 for use as a transitional platform for an oral cattle vaccine. In Vitro Cellular and Developmental Biology - Plant, 2015, 51, 315-323.	0.9	3

#	Article	IF	CITATIONS
19	Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metabolic Engineering, 2015, 30, 105-120.	3.6	80
20	Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biology, 2015, 15, 121.	1.6	123
21	Molecular Cloning, Overexpression and Characterization of a Novel Water Channel Protein from Rhodobacter sphaeroides. PLoS ONE, 2014, 9, e86830.	1.1	30
22	Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree. BMC Plant Biology, 2014, 14, 185.	1.6	27
23	Materials Fabrication from Native and Recombinant Thermoplastic Squid Proteins. Advanced Functional Materials, 2014, 24, 7401-7409.	7.8	44
24	Hydrocarbon production in high density <i>Botryococcus braunii</i> race B continuous culture. Biotechnology and Bioengineering, 2014, 111, 493-503.	1.7	40
25	A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms. Bioresource Technology, 2014, 172, 201-211.	4.8	25
26	Insights into Clostridium phytofermentans biofilm formation: aggregation, microcolony development and the role of extracellular DNA. Microbiology (United Kingdom), 2014, 160, 1134-1143.	0.7	8
27	Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnology for Biofuels, 2013, 6, 59.	6.2	141
28	Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC Biotechnology, 2013, 13, 39.	1.7	95
29	Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophysics, 2013, 6, 4.	4.4	226
30	RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots. BMC Biotechnology, 2012, 12, 21.	1.7	34
31	Developing symbiotic consortia for lignocellulosic biofuel production. Applied Microbiology and Biotechnology, 2012, 93, 1423-1435.	1.7	136
32	Long-Distance Translocation of Protein during Morphogenesis of the Fruiting Body in the Filamentous Fungus, Agaricus bisporus. PLoS ONE, 2011, 6, e28412.	1.1	12
33	Oxygen Transport In Plant Tissue Culture Systems. , 2008, , 173-186.		6
34	Comparison of Transient Protein Expression in Tobacco Leaves and Plant Suspension Culture. Biotechnology Progress, 2008, 21, 946-952.	1.3	35
35	Agrobacterium-Mediated Viral Vector-Amplified Transient Gene Expression in Nicotiana glutinosa Plant Tissue Culture. Biotechnology Progress, 2008, 23, 570-576.	1.3	17
36	Scale-Up of Agrobacterium-Mediated Transient Protein Expression in Bioreactor-Grown Nicotiana glutinosa Plant Cell Suspension Culture. Biotechnology Progress, 2008, 24, 372-376.	1.3	25

#	Article	IF	CITATIONS
37	The Cumulative and Sublethal Effects of Turbulence on Erythrocytes in a Stirred-Tank Model. Annals of Biomedical Engineering, 2007, 35, 2108-2120.	1.3	12
38	Application of bioreactor design principles to plant micropropagation. Plant Cell, Tissue and Organ Culture, 2005, 81, 255-264.	1.2	11
39	Laterally aligned, multiwalled carbon nanotube growth usingMagnetospirillium magnetotacticum. Applied Physics Letters, 2005, 86, 173101.	1.5	16
40	Application of bioreactor design principles to plant micropropagation. , 2005, , 21-40.		4
41	Resid Conversion. , 2005, , 2655-2662.		0
42	Development of Auxotrophic Agrobacterium tumefaciens for Gene Transfer in Plant Tissue Culture. Biotechnology Progress, 2004, 20, 890-896.	1.3	18
43	Trickle-bed root culture bioreactor design and scale-up: Growth, fluid-dynamics, and oxygen mass transfer. Biotechnology and Bioengineering, 2004, 88, 248-260.	1.7	56
44	Effect of Elicitation on Growth, Respiration, and Nutrient Uptake of Root and Cell Suspension Cultures of Hyoscyamus muticus. Biotechnology Progress, 2002, 18, 282-289.	1.3	4
45	Integrated Recovery of Pigments Released from Red Beet Hairy Roots Exposed to Acidic Medium. Journal of Plant Biochemistry and Biotechnology, 2001, 10, 67-69.	0.9	3
46	Intrinsic Oxygen Use Kinetics of Transformed Plant Root Culture. Biotechnology Progress, 2001, 17, 481-489.	1.3	32
47	Inhibitory role of root hairs on transport within root culture bioreactors. Biotechnology and Bioengineering, 2000, 70, 176-186.	1.7	38
48	Achieving Economic Feasibility for Moderate-Value Food and Flavor Additives. , 1999, , 225-236.		17
49	Direct Agrobacterium tumefaciens-Mediated Transformation of Hyoscyamus muticus Hairy Roots Using Green Fluorescent Protein. Biotechnology Progress, 1999, 15, 278-282.	1.3	7
50	The effect of inoculum size on the growth of cell and root cultures ofHyoscyamus muticus: Implications for reactor inoculation. Biotechnology and Bioprocess Engineering, 1999, 4, 287-293.	1.4	15
51	Monitoring biomass in root culture systems. , 1999, 62, 711-721.		26
52	Reactor Design for Root Culture. , 1999, , 139-156.		5
53	Characterization of fluid-flow resistance in root cultures with a convective flow tubular bioreactor. , 1998, 60, 375-384.		50
54	Effects of abiotic inducers on sesquiterpene synthesis in hairy root and cell-suspension cultures of hyoscyomus muticus. Applied Biochemistry and Biotechnology, 1997, 67, 71-77.	1.4	22

#	Article	IF	CITATIONS
55	The role of liquid mixing and gas-phase dispersion in a submerged, sparged root reactor. Enzyme and Microbial Technology, 1997, 20, 207-213.	1.6	35
56	Elevated meristematic respiration in plant root cultures: implications to reactor design Journal of Chemical Engineering of Japan, 1995, 28, 491-493.	0.3	25
57	Role of calcium and differentiation in enhanced sesquiterpene elicitation from calcium alginate-immobilized plant tissue. Enzyme and Microbial Technology, 1995, 17, 554-557.	1.6	17
58	Fluid Dynamic Studies on Plant Root Cultures for Application to Bioreactor Design. , 1994, , 281-305.		22
59	Inoculation and tissue distribution in pilot-scale plant root culture bioreactors. Biotechnology Letters, 1994, 8, 639.	0.5	39
60	Use of Binding Measurements To Predict Elicitor Dosage Requirements for Secondary Metabolite Production from Root Cultures. Biotechnology Progress, 1994, 10, 365-371.	1.3	15
61	Enhanced recovery of solavetivone fromAgrobacterium transformed root cultures ofHyoscyamus muticus using integrated product extraction. Biotechnology and Bioengineering, 1993, 42, 503-508.	1.7	45
62	Plant cell suspension culture rheology. Biotechnology and Bioengineering, 1993, 42, 520-526.	1.7	68
63	Cultivation of roots in bioreactors. Current Opinion in Biotechnology, 1993, 4, 205-210.	3.3	31
64	Interpreting the role of phosphorus and growth rate in enhanced fungal induction of sesquiterpenes from Hyoscyamus muticus root cultures. Applied Microbiology and Biotechnology, 1993, 38, 550.	1.7	12
65	Production of solavetivone by immobilized cells of Hyoscyamus muticus. Biotechnology Letters, 1993, 15, 301-306.	1.1	11
66	Growth of plant root cultures in liquid- and gas dispersed reactor environments. Biotechnology Progress, 1993, 9, 317-322.	1.3	55
67	Approaches to Understanding and Manipulating the Biosynthetic Potential of Plant Roots. Annals of the New York Academy of Sciences, 1992, 665, 188-209.	1.8	102
68	11-Hydroperoxyeicosatetraenoic acid is the major dioxygenation product of lipoxygenase isolated from hairy root cultures of Solanum tuberosum. Biochemical and Biophysical Research Communications, 1992, 189, 1349-1352.	1.0	16
69	Synergistic response of plant hairy-root cultures to phosphate limitation and fungal elicitation. Biotechnology Progress, 1991, 7, 434-438.	1.3	55
70	Approximation of continuous growth ofCephalotaxus harringtonia plant cell cultures using fed-batch operation. Biotechnology and Bioengineering, 1991, 38, 241-246.	1.7	18
71	Modeling linear and variable growth in phosphate limited suspension cultures of Opium poppy. Biotechnology and Bioengineering, 1991, 38, 371-379.	1.7	42
72	Estimation of Growth Yield and Maintenance Coefficient of Plant Cell Suspensions. Biotechnology and Bioengineering, 1991, 38, 1131-1136.	1.7	25

#	Article	IF	CITATIONS
73	Growth Yields and Maintenance Coefficients of Unadapted and NaCl-Adapted Tobacco Cells Grown in Semicontinuous Culture. Plant Physiology, 1991, 96, 1289-1293.	2.3	13
74	Interference of intracellular inorganic phosphate analysis by phosphatase in <i>Papaver somniferum</i> cell suspensions. Phytochemical Analysis, 1990, 1, 70-73.	1.2	1
75	Establishing an inexpensive, space efficient colony of <i>Bemisia tabaci</i> MEAM1 utilizing modelling and feedback control principles. Journal of Applied Entomology, 0, , .	0.8	1