
Peter Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9456562/publications.pdf Version: 2024-02-01

DETED CIADE

#	Article	IF	CITATIONS
1	Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 1997, 25, 483.	2.0	1,577
2	A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. Science, 2013, 339, 1198-1201.	6.0	1,322
3	Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 2012, 484, 49-54.	13.7	1,141
4	Transient Simulation of Last Deglaciation with a New Mechanism for BÃ,lling-AllerÃ,d Warming. Science, 2009, 325, 310-314.	6.0	843
5	Freshwater Forcing of Abrupt Climate Change During the Last Glaciation. Science, 2001, 293, 283-287.	6.0	539
6	Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Climate Change, 2016, 6, 360-369.	8.1	442
7	The multimillennial sea-level commitment of global warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13745-13750.	3.3	227
8	The Sea-Level Fingerprint of West Antarctic Collapse. Science, 2009, 323, 753-753.	6.0	222
9	Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Reviews of Geophysics, 2012, 50, .	9.0	203
10	Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 2013, 494, 81-85.	13.7	186
11	DEGLACIATION OF A SOFT-BEDDED LAURENTIDE ICE SHEET. Quaternary Science Reviews, 1998, 17, 427-448.	1.4	128
12	Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quaternary Science Reviews, 2016, 152, 49-59.	1.4	110
13	Freshwater routing by the Laurentide Ice Sheet during the last deglaciation. Geophysical Monograph Series, 1999, , 177-201.	0.1	107
14	A new projection of sea level change in response to collapse of marine sectors of the Antarctic Ice Sheet. Geophysical Journal International, 2010, 180, 623-634.	1.0	85
15	Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget. Earth and Planetary Science Letters, 2016, 448, 34-41.	1.8	66
16	Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Science Advances, 2021, 7, .	4.7	66
17	Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature, 2020, 577, 660-664.	13.7	62
18	Meeting the looming policy challenge of sea-level change and human migration. Nature Climate Change, 2019, 9, 898-901.	8.1	49

Peter Clark

#	Article	IF	CITATIONS
19	Asynchronous warming and δ ¹⁸ O evolution of deep Atlantic water masses during the last deglaciation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11075-11080.	3.3	38
20	Migration towards Bangladesh coastlines projected to increase with sea-level rise through 2100. Environmental Research Letters, 2021, 16, 024045.	2.2	38
21	Attributing long-term sea-level rise to Paris Agreement emission pledges. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23487-23492.	3.3	35
22	Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse. Science Advances, 2021, 7, .	4.7	25
23	Sea-level commitment as a gauge for climate policy. Nature Climate Change, 2018, 8, 653-655.	8.1	21
24	Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited. Nature Climate Change, 2022, 12, 449-454.	8.1	18
25	Retreat of the Antarctic Ice Sheet During the Last Interglaciation and Implications for Future Change. Geophysical Research Letters. 2021. 48. e2021GL094513.	1.5	10