Gondy Leroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9456109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Psycholinguistic Markers of COVID-19 Conspiracy Tweets and Predictors of Tweet Dissemination. Health Communication, 2023, 38, 21-30.	3.1	10
2	Public responses to COVID-19 mask mandates: examining pro and anti-Mask anger in tweets before and after state-level mandates. Communication Monographs, 2022, 89, 539-557.	2.7	8
3	Evaluation of an online text simplification editor using manual and automated metrics for perceived and actual text difficulty. JAMIA Open, 2022, 5, .	2.0	5
4	Factors Influencing Willingness to Share Health Misinformation Videos on the Internet: Web-Based Survey. Journal of Medical Internet Research, 2021, 23, e30323.	4.3	6
5	Comparison of women and men in biomedical informatics scientific dissemination: retrospective observational case study of the AMIA Annual Symposium: 2017–2020. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1928-1935.	4.4	5
6	Integrating Automated Biomedical Lexicon Creation for Valley Fever Diagnosis. , 2021, , .		2
7	Informatics Approaches for Recognition, Management, and Prevention of Occupational Respiratory Disease. Clinics in Chest Medicine, 2020, 41, 605-621.	2.1	3
8	Clinician Practice Patterns That Result in the Diagnosis of Coccidioidomycosis Before or During Hospitalization. Clinical Infectious Diseases, 2020, 73, e1587-e1593.	5.8	11
9	A Pilot Study of Valley Fever Tweets. Infection Control and Hospital Epidemiology, 2020, 41, s101-s101.	1.8	0
10	A Practical Tutorial Discussion the Evaluating ITArtifacts Using Controlled Experiments using the Design Science Framework. , 2020, , .		0
11	A comparison of text versus audio for information comprehension with future uses for smart speakers. JAMIA Open, 2019, 2, 254-260.	2.0	3
12	Insights from Twitter About Public Perceptions of Asthma, COPD, and Exposures. Journal of Occupational and Environmental Medicine, 2019, 61, 484-490.	1.7	2
13	Algorithmic Generation of Grammar Simplification Rules Using Large Corpora. AMIA Summits on Translational Science Proceedings, 2019, 2019, 72-81.	0.4	0
14	2018 Salary Survey of AMIA Members: Factors Associated with Higher Salaries. AMIA Annual Symposium proceedings, 2019, 2019, 275-284.	0.2	0
15	Health information technology: promise and progress. Health Systems, 2018, 7, 161-165.	1.2	2
16	Automated Extraction of Diagnostic Criteria From Electronic Health Records for Autism Spectrum Disorders: Development, Evaluation, and Application. Journal of Medical Internet Research, 2018, 20, e10497.	4.3	20
17	Improving Consumer Understanding of Medical Text: Development and Validation of a New SubSimplify Algorithm to Automatically Generate Term Explanations in English and Spanish. Journal of Medical Internet Research, 2018, 20, e10779.	4.3	15
18	Measuring text difficulty using parseâ€tree frequency. Journal of the Association for Information Science and Technology, 2017, 68, 2088-2100.	2.9	14

GONDY LEROY

#	Article	IF	CITATIONS
19	Moving Beyond Readability Metrics for Health-Related Text Simplification. IT Professional, 2016, 18, 45-51.	1.5	24
20	Effects on Text Simplification: Evaluation of Splitting Up Noun Phrases. Journal of Health Communication, 2016, 21, 18-26.	2.4	8
21	Assessing Work–Asthma Interaction With Amazon Mechanical Turk. Journal of Occupational and Environmental Medicine, 2015, 57, 381-385.	1.7	11
22	The effect of word familiarity on actual and perceived text difficulty. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, e169-e172.	4.4	41
23	We Know Where You Are Tweeting From: Assigning a Type of Place to Tweets Using Natural Language Processing and Random Forests. , 2014, , .		6
24	A user-study measuring the effects of lexical simplification and coherence enhancement on perceived and actual text difficulty. International Journal of Medical Informatics, 2013, 82, 717-730.	3.3	33
25	Development and evaluation of a biomedical search engine using a predicate-based vector space model. Journal of Biomedical Informatics, 2013, 46, 929-939.	4.3	14
26	User Evaluation of the Effects of a Text Simplification Algorithm Using Term Familiarity on Perception, Understanding, Learning, and Information Retention. Journal of Medical Internet Research, 2013, 15, e144.	4.3	55
27	Development and evaluation of a triple parser to enable visual searching with a biomedical search engine. International Journal of Biomedical Engineering and Technology, 2012, 10, 351.	0.2	2
28	TASC - Crime report visualization for investigative analysis: A case study. , 2012, , .		6
29	A pilot study of a predicate-based vector space model for a biomedical search engine. , 2011, , .		2
30	Eliciting user requirements using Appreciative inquiry. Empirical Software Engineering, 2011, 16, 733-772.	3.9	20
31	A Smart-Phone Application and a Companion Website for the Improvement of the Communication Skills of Children with Autism: Clinical Rationale, Technical Development and Preliminary Results. Journal of Medical Systems, 2011, 35, 703-711.	3.6	57
32	A crime reports analysis system to identify related crimes. Journal of the Association for Information Science and Technology, 2011, 62, 1533-1547.	2.6	7
33	Term Familiarity to Indicate Perceived and Actual Difficulty of Text in Medical Digital Libraries. Lecture Notes in Computer Science, 2011, 7008, 307-310.	1.3	17
34	The influence of text characteristics on perceived and actual difficulty of health information. International Journal of Medical Informatics, 2010, 79, 438-449.	3.3	29
35	Perils of providing visual health information overviews for consumers with low health literacy or high stress. Journal of the American Medical Informatics Association: JAMIA, 2010, 17, 220-223.	4.4	11
36	A balanced approach to health information evaluation: A vocabularyâ€based naÃ⁻ve Bayes classifier and readability formulas. Journal of the Association for Information Science and Technology, 2008, 59,	2.6	25

GONDY LEROY

#	Article	IF	CITATIONS
37	Consumer Health Concepts That Do Not Map to the UMLS: Where Do They Fit?. Journal of the American Medical Informatics Association: JAMIA, 2008, 15, 496-505.	4.4	55
38	Developing Informatics Tools and Strategies for Consumer-centered Health Communication. Journal of the American Medical Informatics Association: JAMIA, 2008, 15, 473-483.	4.4	137
39	Women and Technology: Reversing the Trends of Attrition and Obtaining a Balance. Women's Studies, 2008, 37, 173-175.	0.1	3
40	Crime Information Extraction from Police and Witness Narrative Reports. , 2008, , .		34
41	The Impact of Directionality in Predications on Text Mining. , 2008, , .		2
42	Dynamic generation of a Health Topics Overview from consumer health information documents. International Journal of Biomedical Engineering and Technology, 2008, 1, 395.	0.2	13
43	A Classifier to Evaluate Language Specificity of Medical Documents. , 2007, , .		19
44	Natural Language Processing and e-Government: Extracting Reusable Crime Report Information. , 2007,		15
45	An end user evaluation of query formulation and results review tools in three medical meta-search engines. International Journal of Medical Informatics, 2007, 76, 780-789.	3.3	15
46	Effects of information and machine learning algorithms on word sense disambiguation with small datasets. International Journal of Medical Informatics, 2005, 74, 573-585.	3.3	48
47	Genescene: An ontology-enhanced integration of linguistic and co-occurrence based relations in biomedical texts. Journal of the Association for Information Science and Technology, 2005, 56, 457-468.	2.6	37
48	Communication software using pictures for use with Pocket PCs. AMIA Annual Symposium proceedings, 2005, , 1024.	0.2	0
49	Using symbolic knowledge in the UMLS to disambiguate words in small datasets with a naÃ ⁻ ve Bayes classifier. Studies in Health Technology and Informatics, 2004, 107, 381-5.	0.3	8
50	A shallow parser based on closed-class words to capture relations in biomedical text. Journal of Biomedical Informatics, 2003, 36, 145-158.	4.3	85