
Anna Scomparin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9456084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol. Antioxidants, 2022, 11, 1007.	5.1	6
2	Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Delivery and Translational Research, 2022, 12, 2007-2018.	5.8	8
3	Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development?. Advanced Drug Delivery Reviews, 2021, 175, 113760.	13.7	34
4	Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics, 2021, 13, 1617.	4.5	11
5	Nanosponges as protein delivery systems: Insulin, a case study. International Journal of Pharmaceutics, 2020, 590, 119888.	5.2	31
6	Rational Design of Polyglutamic Acid Delivering an Optimized Combination of Drugs Targeting Mutated BRAF and MEK in Melanoma. Advanced Therapeutics, 2020, 3, 2000028.	3.2	9
7	Oligo-guanidyl targeted bioconjugates forming rod shaped polyplexes as a new nanoplatform for oligonucleotide delivery. Journal of Controlled Release, 2019, 310, 58-73.	9.9	9
8	Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10-CXCR3 Signaling Axis. Cell Reports, 2019, 28, 1785-1798.e6.	6.4	53
9	Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nature Nanotechnology, 2019, 14, 891-901.	31.5	167
10	Persistent Chemiluminescent Glow of Phenoxyâ€dioxetane Luminophore Enables Unique CRETâ€Based Detection of Proteases. Chemistry - A European Journal, 2019, 25, 14679-14687.	3.3	34
11	Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging. Chemical Science, 2019, 10, 2945-2955.	7.4	60
12	Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. Journal of Controlled Release, 2019, 307, 108-138.	9.9	49
13	Novel Oligo-Guanidyl-PEG Carrier Forming Rod-Shaped Polyplexes. Molecular Pharmaceutics, 2019, 16, 1678-1693.	4.6	6
14	Computerâ€aided drug design in new druggable targets for the next generation of immuneâ€oncology therapies. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1397.	14.6	6
15	Amphiphilic poly(α)glutamate polymeric micelles for systemic administration of siRNA to tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 303-315.	3.3	13
16	Direct Realâ€īime Monitoring of Prodrug Activation by Chemiluminescence. Angewandte Chemie - International Edition, 2018, 57, 9033-9037.	13.8	80
17	Direct Realâ€Time Monitoring of Prodrug Activation by Chemiluminescence. Angewandte Chemie, 2018, 130, 9171-9175.	2.0	18
18	Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics, 2018, 8, 3437-3460.	10.0	58

ANNA SCOMPARIN

#	Article	IF	CITATIONS
19	Molecular Weight-Dependent Activity of Aminated Poly(α)glutamates as siRNA Nanocarriers. Polymers, 2018, 10, 548.	4.5	6
20	Structure–Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. Journal of Medicinal Chemistry, 2018, 61, 10957-10975.	6.4	30
21	Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Advanced Drug Delivery Reviews, 2017, 118, 52-64.	13.7	26
22	Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Seminars in Immunology, 2017, 34, 3-24.	5.6	66
23	HPMA copolymer–phospholipase C and dextrin–phospholipase A2 as model triggers for polymer enzyme liposome therapy (PELT). Journal of Drug Targeting, 2017, 25, 818-828.	4.4	7
24	Systemic delivery of siRNA by aminated poly(α)glutamate for the treatment of solid tumors. Journal of Controlled Release, 2017, 257, 132-143.	9.9	24
25	Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. ELife, 2017, 6, .	6.0	50
26	Structure–Function Correlation of Aminated Poly(α)glutamate as siRNA Nanocarriers. Biomacromolecules, 2016, 17, 2787-2800.	5.4	14
27	Tagging the Untaggable: A Difluoroalkyl-Sulfinate Ketone-Based Reagent for Direct C–H Functionalization of Bioactive Heteroarenes. Bioconjugate Chemistry, 2016, 27, 1965-1971.	3.6	14
28	Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. Journal of Controlled Release, 2016, 239, 159-168.	9.9	81
29	Inhibition of Gene Expression and Cancer Cell Migration by CD44v3/6-Targeted Polyion Complexes. Bioconjugate Chemistry, 2016, 27, 947-960.	3.6	11
30	Novel Pullulan Bioconjugate for Selective Breast Cancer Bone Metastases Treatment. Bioconjugate Chemistry, 2015, 26, 489-501.	3.6	35
31	A comparative study of folate receptor-targeted doxorubicin delivery systems: Dosing regimens and therapeutic index. Journal of Controlled Release, 2015, 208, 106-120.	9.9	66
32	Achieving successful delivery of oligonucleotides — From physico-chemical characterization to in vivo evaluation. Biotechnology Advances, 2015, 33, 1294-1309.	11.7	39
33	Interfering Cancer with Polymeric siRNA Nanomedicines. Journal of Biomedical Nanotechnology, 2014, 10, 50-66.	1.1	38
34	Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Delivery and Translational Research, 2014, 4, 38-49.	5.8	54
35	A novel soluble supramolecular system for sustained rh-GH delivery. Journal of Controlled Release, 2014, 194, 168-177.	9.9	13
36	Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Current Opinion in Biotechnology, 2013, 24, 682-689.	6.6	100

ANNA SCOMPARIN

#	Article	IF	CITATIONS
37	Administration, distribution, metabolism and elimination of polymer therapeutics. Journal of Controlled Release, 2012, 161, 446-460.	9.9	262
38	Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. European Journal of Pharmaceutical Sciences, 2011, 42, 547-558.	4.0	90
39	Supramolecular Bioconjugates for Protein and Small Drug Delivery. Israel Journal of Chemistry, 2010, 50, 160-174.	2.3	13
40	Tailored PEG for rh-G-CSF Analogue Site-Specific Conjugation. Bioconjugate Chemistry, 2009, 20, 1179-1185.	3.6	18
41	Site-selective protein glycation and PEGylation. European Polymer Journal, 2008, 44, 1378-1389.	5.4	26