Anna Scomparin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9456084/publications.pdf

Version: 2024-02-01

279487 276539 1,735 41 23 41 citations h-index g-index papers 42 42 42 3164 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Administration, distribution, metabolism and elimination of polymer therapeutics. Journal of Controlled Release, 2012, 161, 446-460.	4.8	262
2	Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nature Nanotechnology, 2019, 14, 891-901.	15.6	167
3	Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Current Opinion in Biotechnology, 2013, 24, 682-689.	3.3	100
4	Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. European Journal of Pharmaceutical Sciences, 2011, 42, 547-558.	1.9	90
5	Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. Journal of Controlled Release, 2016, 239, 159-168.	4.8	81
6	Direct Realâ€Time Monitoring of Prodrug Activation by Chemiluminescence. Angewandte Chemie - International Edition, 2018, 57, 9033-9037.	7.2	80
7	A comparative study of folate receptor-targeted doxorubicin delivery systems: Dosing regimens and therapeutic index. Journal of Controlled Release, 2015, 208, 106-120.	4.8	66
8	Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Seminars in Immunology, 2017, 34, 3-24.	2.7	66
9	Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging. Chemical Science, 2019, 10, 2945-2955.	3.7	60
10	Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics, 2018, 8, 3437-3460.	4.6	58
11	Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Delivery and Translational Research, 2014, 4, 38-49.	3.0	54
12	Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10-CXCR3 Signaling Axis. Cell Reports, 2019, 28, 1785-1798.e6.	2.9	53
13	Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. ELife, 2017, 6, .	2.8	50
14	Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. Journal of Controlled Release, 2019, 307, 108-138.	4.8	49
15	Achieving successful delivery of oligonucleotides $\hat{a}\in$ " From physico-chemical characterization to in vivo evaluation. Biotechnology Advances, 2015, 33, 1294-1309.	6.0	39
16	Interfering Cancer with Polymeric siRNA Nanomedicines. Journal of Biomedical Nanotechnology, 2014, 10, 50-66.	0.5	38
17	Novel Pullulan Bioconjugate for Selective Breast Cancer Bone Metastases Treatment. Bioconjugate Chemistry, 2015, 26, 489-501.	1.8	35
18	Persistent Chemiluminescent Glow of Phenoxyâ€dioxetane Luminophore Enables Unique CRETâ€Based Detection of Proteases. Chemistry - A European Journal, 2019, 25, 14679-14687.	1.7	34

#	Article	IF	CITATIONS
19	Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development?. Advanced Drug Delivery Reviews, 2021, 175, 113760.	6.6	34
20	Nanosponges as protein delivery systems: Insulin, a case study. International Journal of Pharmaceutics, 2020, 590, 119888.	2.6	31
21	Structure–Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. Journal of Medicinal Chemistry, 2018, 61, 10957-10975.	2.9	30
22	Site-selective protein glycation and PEGylation. European Polymer Journal, 2008, 44, 1378-1389.	2.6	26
23	Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Advanced Drug Delivery Reviews, 2017, 118, 52-64.	6.6	26
24	Systemic delivery of siRNA by aminated poly($\hat{l}\pm$)glutamate for the treatment of solid tumors. Journal of Controlled Release, 2017, 257, 132-143.	4.8	24
25	Tailored PEG for rh-G-CSF Analogue Site-Specific Conjugation. Bioconjugate Chemistry, 2009, 20, 1179-1185.	1.8	18
26	Direct Realâ€Time Monitoring of Prodrug Activation by Chemiluminescence. Angewandte Chemie, 2018, 130, 9171-9175.	1.6	18
27	Structure–Function Correlation of Aminated Poly(α)glutamate as siRNA Nanocarriers. Biomacromolecules, 2016, 17, 2787-2800.	2.6	14
28	Tagging the Untaggable: A Difluoroalkyl-Sulfinate Ketone-Based Reagent for Direct C–H Functionalization of Bioactive Heteroarenes. Bioconjugate Chemistry, 2016, 27, 1965-1971.	1.8	14
29	Supramolecular Bioconjugates for Protein and Small Drug Delivery. Israel Journal of Chemistry, 2010, 50, 160-174.	1.0	13
30	A novel soluble supramolecular system for sustained rh-GH delivery. Journal of Controlled Release, 2014, 194, 168-177.	4.8	13
31	Amphiphilic poly $(\hat{l}\pm)$ glutamate polymeric micelles for systemic administration of siRNA to tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 303-315.	1.7	13
32	Inhibition of Gene Expression and Cancer Cell Migration by CD44v3/6-Targeted Polyion Complexes. Bioconjugate Chemistry, 2016, 27, 947-960.	1.8	11
33	Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics, 2021, 13, 1617.	2.0	11
34	Oligo-guanidyl targeted bioconjugates forming rod shaped polyplexes as a new nanoplatform for oligonucleotide delivery. Journal of Controlled Release, 2019, 310, 58-73.	4.8	9
35	Rational Design of Polyglutamic Acid Delivering an Optimized Combination of Drugs Targeting Mutated BRAF and MEK in Melanoma. Advanced Therapeutics, 2020, 3, 2000028.	1.6	9
36	Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Delivery and Translational Research, 2022, 12, 2007-2018.	3.0	8

#	Article	IF	CITATIONS
37	HPMA copolymer–phospholipase C and dextrin–phospholipase A2 as model triggers for polymer enzyme liposome therapy (PELT). Journal of Drug Targeting, 2017, 25, 818-828.	2.1	7
38	Molecular Weight-Dependent Activity of Aminated Poly $(\hat{l}\pm)$ glutamates as siRNA Nanocarriers. Polymers, 2018, 10, 548.	2.0	6
39	Novel Oligo-Guanidyl-PEG Carrier Forming Rod-Shaped Polyplexes. Molecular Pharmaceutics, 2019, 16, 1678-1693.	2.3	6
40	Computerâ€nided drug design in new druggable targets for the next generation of immuneâ€oncology therapies. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1397.	6.2	6
41	Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol. Antioxidants, 2022, 11, 1007.	2.2	6