

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455986/publications.pdf Version: 2024-02-01

I di Vid

#	Article	IF	CITATIONS
1	Super-assembled sandwich-like Au@MSN@Ag nanomatrices for high-throughput and efficient detection of small biomolecules. Nano Research, 2022, 15, 2722-2733.	10.4	14
2	Interfacial Assembly of Nanowire Arrays toward Carbonaceous Mesoporous Nanorods and Superstructures. Small, 2022, 18, e2104477.	10.0	7
3	Interfacial assembly of functional mesoporous nanomatrices for laser desorption/ionization mass spectrometry. Nano Today, 2022, 42, 101365.	11.9	8
4	Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
5	Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport. Analyst, The, 2022, 147, 652-660.	3.5	8
6	Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. Journal of the American Chemical Society, 2022, 144, 1634-1646.	13.7	64
7	Interfacial Assembly of Functional Mesoporous Carbonâ€Based Materials into Films for Batteries and Electrocatalysis. Advanced Materials Interfaces, 2022, 9, .	3.7	13
8	Superâ€Assembled Hierarchical Cellulose Aerogelâ€Gelatin Solid Electrolyte for Implantable and Biodegradable Zinc Ion Battery. Advanced Functional Materials, 2022, 32, .	14.9	48
9	Interfacial Superassembly of Mesoporous Titania Nanopillar-Arrays/Alumina Oxide Heterochannels for Light- and pH-Responsive Smart Ion Transport. ACS Central Science, 2022, 8, 361-369.	11.3	14
10	Innenrücktitelbild: Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures (Angew. Chem. 12/2022). Angewandte Chemie, 2022, 134, .	2.0	0
11	General Synergistic Capture-Bonding Superassembly of Atomically Dispersed Catalysts on Micropore-Vacancy Frameworks. Nano Letters, 2022, 22, 2889-2897.	9.1	27
12	Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Applied Materials & Interfaces, 2022, 14, 15517-15528.	8.0	14
13	Superassembled Hierarchical Asymmetric Magnetic Mesoporous Nanorobots Driven by Smart Confined Catalytic Degradation. Chemistry - A European Journal, 2022, 28, e202200307.	3.3	2
14	Superassembly of Surface-Enriched Ru Nanoclusters from Trapping–Bonding Strategy for Efficient Hydrogen Evolution. ACS Nano, 2022, 16, 7993-8004.	14.6	54
15	Interfacially Super-Assembled Tyramine-Modified Mesoporous Silica-Alumina Oxide Heterochannels for Label-Free Tyrosinase Detection. Analytical Chemistry, 2022, 94, 2589-2596.	6.5	10
16	Superassembled Hierarchical Asymmetric Magnetic Mesoporous Nanorobots Driven by Smart Confined Catalytic Degradation. Chemistry - A European Journal, 2022, 28, e202201278.	3.3	2
17	Super-Assembled Chiral Mesostructured Heteromembranes for Smart and Sensitive Couple-Accelerated Enantioseparation. Journal of the American Chemical Society, 2022, 144, 13794-13805.	13.7	22
18	pHâ€Gated Activation of Gene Transcription and Translation in Biocatalytic Metal–Organic Framework Artificial Cells. Advanced NanoBiomed Research, 2021, 1, 2000034.	3.6	11

Lei Xie

#	Article	IF	CITATIONS
19	Implantable and Biodegradable Micro-Supercapacitor Based on a Superassembled Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Interfaces, 2021, 13, 8285-8293.	8.0	92
20	Interfacial Super-Assembly of Ordered Mesoporous Silica–Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 8782-8793.	8.0	44
21	Interfacially Superâ€Assembled Asymmetric and H ₂ O ₂ Sensitive Multilayerâ€Sandwich Magnetic Mesoporous Silica Nanomotors for Detecting and Removing Heavy Metal Ions. Advanced Functional Materials, 2021, 31, 2010694.	14.9	49
22	Interfacial Superâ€Assembly of Tâ€Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation. Small, 2021, 17, e2100141.	10.0	30
23	Recent Advances in Heterosilica-Based Micro/Nanomotors: Designs, Biomedical Applications, and Future Perspectives. Chemistry of Materials, 2021, 33, 3022-3046.	6.7	30
24	Ligand-Mediated Spatially Controllable Superassembly of Asymmetric Hollow Nanotadpoles with Fine-Tunable Cavity as Smart H ₂ O ₂ -Sensitive Nanoswimmers. ACS Nano, 2021, 15, 11451-11460.	14.6	24
25	Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. Journal of the American Chemical Society, 2021, 143, 6922-6932.	13.7	61
26	Superâ€Assembled Hierarchical CoO Nanosheetsâ€Cu Foam Composites as Multiâ€Level Hosts for Highâ€Performance Lithium Metal Anodes. Small, 2021, 17, e2101301.	10.0	33
27	Interfacial Super-Assembly of Nanofluidic Heterochannels from Layered Graphene and Alumina Oxide Arrays for Label-Free Histamine-Specific Detection. Analytical Chemistry, 2021, 93, 2982-2987.	6.5	20
28	Super-assembled silica nanoprobes for intracellular Zn(<scp>ii</scp>) sensing and reperfusion injury treatment through <i>in situ</i> MOF crystallization. Analyst, The, 2021, 146, 6788-6797.	3.5	5
29	Interfacial Superâ€Assembly of Ordered Mesoporous Carbon‣ilica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature―and pH‣ensitive Smart Ion Transport. Angewandte Chemie - International Edition, 2021, 60, 26167-26176.	13.8	58
30	Interfacial Superâ€Assembly of Ordered Mesoporous Carbonâ€Silica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature―and pHâ€Sensitive Smart Ion Transport. Angewandte Chemie, 2021, 133, 26371-26380.	2.0	12
31	Super-Assembled Periodic Mesoporous Organosilica Frameworks for Real-Time Hypoxia-Triggered Drug Release and Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 50246-50257.	8.0	11
32	Laser Cladding Induced Spherical Graphitic Phases by Super-Assembly of Graphene-Like Microstructures and the Antifriction Behavior. ACS Central Science, 2021, 7, 318-326.	11.3	8
33	Biomass-derived ordered mesoporous carbon nano-ellipsoid encapsulated metal nanoparticles inside: ideal nanoreactors for shape-selective catalysis. Chemical Communications, 2020, 56, 229-232.	4.1	40
34	Biocatalytic metal–organic framework nanomotors for active water decontamination. Chemical Communications, 2020, 56, 14837-14840.	4.1	34
35	Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Research, 2020, 13, 1013-1019.	10.4	69
36	Annular Mesoporous Carbonaceous Nanospheres from Biomass-Derived Building Units with Enhanced Biological Interactions. Chemistry of Materials, 2019, 31, 7186-7191.	6.7	28

Lei Xie

#	Article	IF	CITATIONS
37	Kinetics-controlled synthesis of hierarchically porous materials with tunable properties from diverse building blocks. Carbon, 2019, 155, 611-617.	10.3	16
38	Carbon vacancy defect-activated Pt cluster for hydrogen generation. Journal of Materials Chemistry A, 2019, 7, 15364-15370.	10.3	57
39	Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Research, 2019, 12, 1267-1278.	10.4	30
40	Sustainable and scalable synthesis of monodisperse carbon nanospheres and their derived superstructures. Green Chemistry, 2018, 20, 4596-4601.	9.0	31
41	Cooperative Assembly of Asymmetric Carbonaceous Bivalve-Like Superstructures from Multiple Building Blocks. Research, 2018, 2018, 5807980.	5.7	23
42	Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant. Chemical Communications, 2014, 50, 12633-12636.	4.1	64
43	An Efficient Way To Introduce Hierarchical Structure into Biomass-Based Hydrothermal Carbonaceous Materials. ACS Sustainable Chemistry and Engineering, 2014, 2, 2435-2441.	6.7	94
44	Kineticsâ€Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures. Angewandte Chemie, 0, , .	2.0	0