Juan M Feliu

List of Publications by Citations

Source: https://exaly.com/author-pdf/9455938/juan-m-feliu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

537	23,390 citations	80	119
papers		h-index	g-index
553	25,428 ext. citations	5.7	7.17
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
537	Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. <i>Nature Energy</i> , 2017 , 2,	62.3	505
536	Role of Crystalline Defects in Electrocatalysis: Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 12938-12947	3.4	339
535	Surface characterization of platinum electrodes. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1359-73	3.6	311
534	Oxygen reduction on stepped platinum surfaces in acidic media. <i>Journal of Electroanalytical Chemistry</i> , 2007 , 599, 333-343	4.1	303
533	On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 564, 141-150	4.1	290
532	In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. <i>Nature Energy</i> , 2019 , 4, 60-67	62.3	275
531	Defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2014 , 86, 245-258	2.1	263
530	Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 3689-98	3.6	244
529	Cooxidation on stepped Pt[n(111)[1111)] electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2000 , 487, 37-44	4.1	235
528	An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1988 , 243, 419-433		234
527	Surface Reactivity at ChiralPlatinum Surfaces. <i>Langmuir</i> , 1999 , 15, 2420-2424	4	214
526	Role of Crystalline Defects in Electrocatalysis: CO Adsorption and Oxidation on Stepped Platinum Electrodes As Studied by in situ Infrared Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9863-	·98 7 2	203
525	Study of the charge displacement at constant potential during CO adsorption on Pt(110) and Pt(111) electrodes in contact with a perchloric acid solution. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 330, 489-497	4.1	203
524	Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (1 0 0) surfaces. <i>Electrochemistry Communications</i> , 2004 , 6, 1080-1084	5.1	198
523	Electrochemical Characterization of Shape-Controlled Pt Nanoparticles in Different Supporting Electrolytes. <i>ACS Catalysis</i> , 2012 , 2, 901-910	13.1	196
522	Thirty years of platinum single crystal electrochemistry. <i>Journal of Solid State Electrochemistry</i> , 2011 , 15, 1297-1315	2.6	172
521	Water dissociation on well-defined platinum surfaces: The electrochemical perspective. <i>Catalysis Today</i> , 2013 , 202, 105-113	5.3	166

(2015-2008)

520	C-type cytochromes wire electricity-producing bacteria to electrodes. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 4874-7	16.4	166	
519	New information on the unusual adsorption states of Pt(111) in sulphuric acid solutions from potentiostatic adsorbate replacement by CO. <i>Journal of Electroanalytical Chemistry</i> , 1994 , 372, 265-268	4.1	164	
518	Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111). <i>Journal of Electroanalytical Chemistry</i> , 2002 , 524-525, 242-251	4.1	158	
517	Effect of Adatoms in the Electrocatalysis of HCOOH Oxidation. A Theoretical Model. <i>Langmuir</i> , 1997 , 13, 6287-6293	4	157	
516	The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: The role of anion adsorption in fundamental electrocatalysis. <i>Electrochimica Acta</i> , 2010 , 55, 7982-7994	6.7	155	
515	CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. <i>Electrochemistry Communications</i> , 2006 , 8, 189-194	5.1	151	
514	Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. <i>Faraday Discussions</i> , 2008 , 140, 379-97; discussion 417-37	3.6	148	
513	Oxygen reduction reaction at Pt single crystals: a critical overview. <i>Catalysis Science and Technology</i> , 2014 , 4, 1685	5.5	142	
512	Validity of double-layer charge-corrected voltammetry for assaying carbon monoxide coverages on ordered transition metals: comparisons with adlayer structures in electrochemical and ultrahigh vacuum environments. <i>Surface Science</i> , 1998 , 410, 48-61	1.8	142	
511	Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. <i>Environmental Science & Environmental </i>	10.3	137	
510	The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 2167-71	11.8	136	
509	Electrochemistry of Shape-Controlled Catalysts: Oxygen Reduction Reaction on Cubic Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 14078-14083	3.8	136	
508	Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 350, 73-88	4.1	135	
507	Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms: Part I. Formic acid oxidation on the Pt (111)-Bi system. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 258, 89-100		135	
506	Selective electrocatalysis of ammonia oxidation on Pt(1 0 0) sites in alkaline medium. <i>Electrochemistry Communications</i> , 2003 , 5, 22-26	5.1	134	
505	Shape dependent electrocatalysis. Annual Reports on the Progress of Chemistry Section C, 2011 , 107, 263		131	
504	Effect of Temperature on Hydrogen Adsorption on Pt(111), Pt(110), and Pt(100) Electrodes in 0.1 M HClO4. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 228-238	3.4	131	
503	Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt-Ni-Co Alloy Nanocatalysts. <i>Nano Letters</i> , 2015 , 15, 7473-80	11.5	129	

502	Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. <i>Electrochimica Acta</i> , 2012 , 59, 329-335	6.7	127
501	Hydrogen evolution on platinum single crystal surfaces: effects of irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on platinum (100). <i>The Journal of Physical Chemistry</i> , 1993 , 97, 4769-4776		126
500	Pt-Rich/Sn-Rich/Pt Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3791-3797	16.4	124
499	New understanding of the nature of OH adsorption on Pt(111) electrodes. <i>Electrochemistry Communications</i> , 2007 , 9, 2789-2794	5.1	123
498	Potentiostatic charge displacement by exchanging adsorbed species on Pt(111) electrodes displacement displace	6.7	121
497	Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(100) nanoparticles. <i>Journal of Power Sources</i> , 2007 , 171, 448-456	8.9	120
496	Dependence of the Potential of Zero Charge of Stepped Platinum (111) Electrodes on the Oriented Step-Edge Density: Electrochemical Implications and Comparison with Work Function Behavior. Journal of Physical Chemistry B, 2000 , 104, 597-605	3.4	120
495	Thermodynamic analysis of the temperature dependence of OH adsorption on Pt(111) and Pt(100) electrodes in acidic media in the absence of specific anion adsorption. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11344-51	3.4	118
494	Significantly enhancing catalytic activity of tetrahexahedral Pt nanocrystals by Bi adatom decoration. <i>Journal of the American Chemical Society</i> , 2011 , 133, 12930-3	16.4	117
493	Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes. <i>Journal of Electroanalytical Chemistry</i> , 1994 , 376, 151-160	4.1	115
492	Methanol oxidation on gold nanoparticles in alkaline media: Unusual electrocatalytic activity. <i>Electrochimica Acta</i> , 2006 , 52, 1662-1669	6.7	111
491	Temperature Effects in the Enantiomeric Electro-Oxidation of d- and l-Glucose on Pt{643}S. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 1381-1385	3.4	110
490	In Situ Surface Characterization of Preferentially Oriented Platinum Nanoparticles by Using Electrochemical Structure Sensitive Adsorption Reactions. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13573-13575	3.4	107
489	Electrochemical studies in sulphuric acid solutions of adsorbed CO on Pt (111) electrodes. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 296, 191-201		107
488	Definition of the transfer coefficient in electrochemistry (IUPAC Recommendations 2014). <i>Pure and Applied Chemistry</i> , 2014 , 86, 259-262	2.1	105
487	Potential-Dependent Water Orientation on Pt(111), Pt(100), and Pt(110), As Inferred from Laser-Pulsed Experiments. Electrostatic and Chemical Effects. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9290-9304	3.8	104
486	Ammonia selective oxidation on Pt(100) sites in an alkaline medium. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 12914-9	3.4	104
485	CO electrooxidation on carbon supported platinum nanoparticles: Effect of aggregation. <i>Journal of Electroanalytical Chemistry</i> , 2010 , 644, 117-126	4.1	102

(1993-2000)

484	Sensitivity of Compressed Carbon Monoxide Adlayers on Platinum(111) Electrodes to Long-Range Substrate Structure: Influence of Monoatomic Steps. <i>Langmuir</i> , 2000 , 16, 811-816	4	102
483	Towards the understanding of the interfacial pH scale at Pt(1 1 1) electrodes. <i>Electrochimica Acta</i> , 2015 , 162, 138-145	6.7	101
482	Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. <i>Electrochemistry Communications</i> , 2011 , 13, 734-737	5.1	101
481	Displacement of adsorbed iodine on platinum single-crystal electrodes by irreversible adsorption of CO at controlled potential. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 360, 325-335	4.1	101
480	The role of the steps in the cleavage of the C-C bond during ethanol oxidation on platinum electrodes. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 9114-23	3.6	98
479	Poison formation reaction from formic acid on Pt(100) electrodes modified by irreversibly adsorbed bismuth and antimony. <i>Journal of Electroanalytical Chemistry</i> , 1994 , 368, 101-108	4.1	98
478	Synthesis of Pt Nanoparticles in Water-in-Oil Microemulsion: Effect of HCl on Their Surface Structure. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1280-3	16.4	96
477	Role of surface defect sites: from Pt model surfaces to shape-controlled nanoparticles. <i>Chemical Science</i> , 2012 , 3, 136-147	9.4	96
476	Effect of increasing amount of steps on the potential of zero total charge of Pt(111) electrodes. <i>Electrochimica Acta</i> , 1999 , 45, 629-637	6.7	96
475	Formic Acid Oxidation on Shape-Controlled Pt Nanoparticles Studied by Pulsed Voltammetry. Journal of Physical Chemistry C, 2010 , 114, 13802-13812	3.8	95
474	Oxidation of CO adlayers on Pt(111) at low potentials: an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients. <i>Journal of Electroanalytical Chemistry</i> , 1999 , 467, 74-84	4.1	95
473	Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 8822-31	3.6	89
472	Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps. <i>ChemPhysChem</i> , 2009 , 10, 1922-6	3.2	88
471	Potential of zero total charge of platinum single crystals: A local approach to stepped surfaces vicinal to Pt(111). <i>Russian Journal of Electrochemistry</i> , 2006 , 42, 1145-1160	1.2	88
470	Selective catalytic reduction at quasi-perfect Pt(100) domains: a universal low-temperature pathway from nitrite to N2. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10928-39	16.4	87
469	DEMS study of ammonia oxidation on platinum basal planes. <i>Journal of Electroanalytical Chemistry</i> , 2006 , 588, 331-338	4.1	86
468	Determination of the potentials of zero total charge of Pt(100) stepped surfaces in the [] zone. Effect of the step density and anion adsorption. <i>Journal of Electroanalytical Chemistry</i> , 2003 , 552, 115-12	 28 ¹	86
467	Electrochemical structure-sensitive behaviour of irreversibly adsorbed palladium on Pt(100), Pt(111) and Pt(110) in an acidic medium. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 351, 299-319	4.1	86

466	New observations of a structure sensitive electrochemical behaviour of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt (111) and Pt (100) orientations. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1988 , 256, 149-163		86
465	Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: electrochemical and spectroscopic studies. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 3766-73	3.6	84
464	Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 12651-4	3.4	84
463	Thermodynamic studies of anion adsorption at the Pt(111) electrode surface in sulfuric acid solutions. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 534, 79-89	4.1	83
462	Thermodynamic studies of chloride adsorption at the Pt(111) electrode surface from 0.1 M HClO4 solution. <i>Journal of Electroanalytical Chemistry</i> , 2005 , 576, 33-41	4.1	83
461	Scanning Tunneling Microscopy Images of Ruthenium Submonolayers Spontaneously Deposited on a Pt(111) Electrode. <i>Langmuir</i> , 1999 , 15, 4944-4948	4	83
460	Electrochemical behaviour of CO layers formed by solution dosing at open circuit on Pt(111). Voltammetric determination of CO coverages at full hydrogen adsorption blocking in various acid media. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 327, 261-278	4.1	82
459	Scanning tunneling microscopy and electrochemical study of the surface structure of Pt(10,10,9) and Pt(11,10,10) electrodes prepared under different cooling conditions. <i>Surface Science</i> , 1999 , 440, 259-270	1.8	80
458	Direct Raman Spectroscopic Evidence of Oxygen Reduction Reaction Intermediates at High-Index Pt() Surfaces. <i>Journal of the American Chemical Society</i> , 2020 , 142, 715-719	16.4	80
457	Pd adatom decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6998-7001	16.4	78
456	Potential of zero charge of platinum stepped surfaces: a combined approach of CO charge displacement and N2O reduction. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 532, 67-74	4.1	78
455	Electrochemical behaviour of irreversibly adsorbed bismuth on Pt (100) with different degrees of crystalline surface order. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 269, 175-189		78
454	Pt(111) surface disorder kinetics in perchloric acid solutions and the influence of specific anion adsorption. <i>Electrochimica Acta</i> , 2012 , 82, 558-569	6.7	77
453	The effect of the cooling atmosphere in the preparation of flame-annealed Pt(111) electrodes on CO adlayer oxidation. <i>Electrochemistry Communications</i> , 2000 , 2, 487-490	5.1	77
452	On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface. <i>Electrochemistry Communications</i> , 2000 , 2, 636-640	5.1	76
451	Temperature Dependence of CO Chemisorption and Its Oxidative Desorption on the Pt(111) Electrode. <i>Langmuir</i> , 2000 , 16, 4779-4783	4	76
450	On the voltammetric and spectroscopic characterization of nitric oxide adlayers formed from nitrous acid on Pt(h,k,l) and Rh(h,k,l) electrodes. <i>Electrochimica Acta</i> , 1996 , 41, 729-745	6.7	76
449	Effect of pH and Water Structure on the Oxygen Reduction Reaction on platinum electrodes. <i>Electrochimica Acta</i> , 2017 , 241, 497-509	6.7	74

(2013-2013)

448	Sequential Pt(111) oxide formation in perchloric acid: An electrochemical study of surface species inter-conversion. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 688, 360-370	4.1	74	
447	Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 10258-65	3.6	74	
446	Specific surface reactions for identification of platinum surface domains. <i>Electrochimica Acta</i> , 2005 , 50, 4308-4317	6.7	74	
445	Breaking the C-C bond in the ethanol oxidation reaction on platinum electrodes: effect of steps and ruthenium adatoms. <i>ChemPhysChem</i> , 2010 , 11, 1391-4	3.2	72	
444	Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions. <i>Electrochimica Acta</i> , 2010 , 55, 794-803	6.7	72	
443	Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 261, 113-125		72	
442	Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13110-3	16.4	71	
441	Formic acid oxidation on Bi Pt(1 1 1) electrode in perchloric acid media. A kinetic study. <i>Journal of Electroanalytical Chemistry</i> , 2003 , 554-555, 25-34	4.1	71	
440	Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14992-8	16.4	70	
439	Formic Acid Electrooxidation on Noble-Metal Electrodes: Role and Mechanistic Implications of pH, Surface Structure, and Anion Adsorption. <i>ChemElectroChem</i> , 2014 , 1, 1075-1083	4.3	70	
438	Electrochemical and spectroscopic studies of ethanol oxidation on Pt stepped surfaces modified by tin adatoms. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 12163-72	3.6	70	
437	Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution. <i>Carbon</i> , 2011 , 49, 4031-4039	10.4	70	
436	Temperature dependence of the COads oxidation process on Pt(1 1 1), Pt(1 0 0), and Pt(1 1 0) electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 567, 139-149	4.1	70	
435	Anion adsorption on Pd P t(111) electrodes in sulphuric acid solution. <i>Journal of Electroanalytical Chemistry</i> , 2001 , 497, 125-138	4.1	70	
434	Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: Evidences of atomic surface disordering. <i>Electrochemistry Communications</i> , 2011 , 13, 502-505	5.1	69	
433	Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 258, 101-113		69	
432	Ethanol oxidation on Pt single-crystal electrodes: surface-structure effects in alkaline medium. <i>ChemPhysChem</i> , 2014 , 15, 2019-28	3.2	68	
431	Oxygen reduction reaction on stepped platinum surfaces in alkaline media. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 15416-25	3.6	68	

430	Electrocatalysis of formic acid and CO oxidation on antimony-modified Pt(111) electrodes. <i>Electrochimica Acta</i> , 1998 , 44, 1403-1414	6.7	68
429	Adsorption of formate and its role as intermediate in formic acid oxidation on platinum electrodes. <i>ChemPhysChem</i> , 2011 , 12, 1641-4	3.2	67
428	The unusual adsorption states of Pt(111) electrodes studied by an iodine displacement method: comparison with Au(111) electrodes. <i>Surface Science</i> , 1995 , 325, 131-138	1.8	67
427	Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3824-33	16.4	65
426	Thermodynamic approach to the double layer capacity of a Pt(111) electrode in perchloric acid solutions. <i>Electrochimica Acta</i> , 2006 , 51, 3787-3793	6.7	65
425	Formic acid self-poisoning on bismuth-modified stepped electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2001 , 500, 498-509	4.1	65
424	Electrochemical reduction of nitrate on Pt(S)[n(1 1 1) [(1 1 1)] electrodes in perchloric acid solution. <i>Electrochimica Acta</i> , 2007 , 52, 6023-6033	6.7	64
423	Electrochemical oxidation of ethylene glycol on Pt single crystal electrodes with basal orientations in acidic medium. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 290, 119-	133	63
422	Competitive adsorption of hydrogen and bromide on Pt(1 0 0): Mean-field approximation vs. Monte Carlo simulations. <i>Journal of Electroanalytical Chemistry</i> , 2006 , 588, 1-14	4.1	62
421	Anion effects and the mechanism of Cu UPD on Pt(111): X-ray and electrochemical studies. <i>Surface Science</i> , 1995 , 335, 101-109	1.8	62
420	Preliminary study of the electrochemical adsorption behaviour of a palladium modified Pt(111) electrode in the whole range of coverage. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1991 , 310, 429-435		62
419	Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media. <i>ACS Applied Materials & Materials & Interfaces</i> , 2019 , 11, 613-623	9.5	62
418	Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes. <i>ACS Catalysis</i> , 2015 , 5, 645-654	13.1	61
417	Effects of the anion adsorption and pH on the formic acid oxidation reaction on Pt(111) electrodes. <i>Electrochimica Acta</i> , 2014 , 140, 511-517	6.7	61
416	Thermodynamic Studies of Anion Adsorption at Stepped Platinum(hkl) Electrode Surfaces in Sulfuric Acid Solutions. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 12787-12796	3.4	61
415	In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2256-73	1.3	60
414	CO monolayer oxidation on stepped Pt(S) [(n 🗓)(1 0 0) [(1 1 0)] surfaces. <i>Electrochimica Acta</i> , 2009 , 54, 4459-4466	6.7	60
413	Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 416-24	3.6	60

(2006-2005)

412	Determination of (111) ordered domains on platinum electrodes by irreversible adsorption of bismuth. <i>Analytical Chemistry</i> , 2005 , 77, 5317-23	7.8	60
411	Role of the Metal and Surface Structure in the Electro-oxidation of Hydrazine in Acidic Media. <i>Journal of the Electrochemical Society</i> , 2002 , 149, D35	3.9	60
410	Further Insights into the Formic Acid Oxidation Mechanism on Platinum: pH and Anion Adsorption Effects. <i>Electrochimica Acta</i> , 2015 , 180, 479-485	6.7	59
409	Kinetic study of nitrate reduction on Pt(110) electrode in perchloric acid solution. <i>Electrochimica Acta</i> , 2008 , 53, 3626-3634	6.7	59
408	Some reflections on the understanding of the oxygen reduction reaction at Pt(111). <i>Beilstein Journal of Nanotechnology</i> , 2013 , 4, 956-67	3	58
407	Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and PdM nanoalloys in acid and alkaline solutions. <i>Electrochimica Acta</i> , 2011 , 56, 6702-6708	6.7	58
406	In Situ FTIR Spectroscopy Characterization of the NO Adlayers Formed at Platinum Single Crystal Electrodes in Contact with Acidic Solutions of Nitrite. <i>Langmuir</i> , 1995 , 11, 3549-3553	4	58
405	New insights into the oxygen reduction reaction mechanism on Pt(111): a detailed electrochemical study. <i>ChemSusChem</i> , 2013 , 6, 1091-100	8.3	57
404	ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens. <i>Bioelectrochemistry</i> , 2010 , 78, 25-9	5.6	57
403	Formic acid oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium. <i>Journal of Electroanalytical Chemistry</i> , 1994 , 373, 217-225	4.1	56
402	Electrochemical surface reordering of Pt(111): A quantification of the place-exchange process. Journal of Electroanalytical Chemistry, 2011 , 662, 17-24	4.1	55
401	On the global and local values of the potential of zero total charge at well-defined platinum surfaces: stepped and adatom modified surfaces. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 568, 329-	342	55
400	Comparison of electrosorption at activated polycrystalline and Pt(531) kinked platinum electrodes: surface voltammetry and charge displacement on potentiostatic CO adsorption. <i>Journal of Electroanalytical Chemistry</i> , 1996 , 404, 281-289	4.1	55
399	An Aza-Fused Econjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. <i>ACS Catalysis</i> , 2017 , 7, 1015-1024	13.1	54
398	Analysis of temperature effects on hydrogen and OH adsorption on Pt(111), Pt(100) and Pt(110) by means of Gibbs thermodynamics. <i>Journal of Electroanalytical Chemistry</i> , 2010 , 649, 69-82	4.1	53
397	On the electrochemical behavior of the Pt(100) vicinal surfaces in bromide solutions. <i>Surface Science</i> , 2004 , 560, 269-284	1.8	53
396	Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1991 , 305, 229-240		53
395	In-situ infrared study of the adsorption and oxidation of oxalic acid at single-crystal and thin-film gold electrodes: a combined external reflection infrared and ATR-SEIRAS approach. <i>Langmuir</i> , 2006 , 22, 7192-202	4	52

394	Determination of the Gibbs excess of H and OH adsorbed at a Pt(111) electrode surface using a thermodynamic method. <i>Journal of Electroanalytical Chemistry</i> , 2003 , 558, 19-24	4.1	52
393	On the behavior of the Pt(100) and vicinal surfaces in alkaline media. <i>Electrochimica Acta</i> , 2011 , 58, 184	-19972	51
392	Effect of pH and alkaline metal cations on the voltammetry of pt(111) single crystal electrodes in sulfuric acid solution. <i>ChemPhysChem</i> , 2004 , 5, 1221-7	3.2	51
391	CO oxidation on stepped Rh[n (1 1 1) [(1 1 1)] single crystal electrodes: a voltammetric study. Journal of Electroanalytical Chemistry, 2004 , 572, 79-91	4.1	51
390	Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(1 0 0). <i>Electrochimica Acta</i> , 2005 , 50, 3111-3121	6.7	51
389	Potential-dependent water orientation on Pt(111) stepped surfaces from laser-pulsed experiments. <i>Electrochimica Acta</i> , 2009 , 54, 966-977	6.7	50
388	Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods. <i>Electrochimica Acta</i> , 2010 , 55, 8252-8257	6.7	50
387	Thermodynamic analysis of (bi)sulphate adsorption on a Pt(111) electrode as a function of pH. <i>Electrochimica Acta</i> , 2008 , 53, 6793-6806	6.7	50
386	Electrochemical and in situ FTIR studies of the CO adsorption at palladium and rhodium multilayers deposited on platinum single crystal surfaces. I. Pt(110) substrate. <i>Surface Science</i> , 1995 , 327, 202-215	1.8	50
385	Formic acid oxidation on platinum electrodes: a detailed mechanism supported by experiments and calculations on well-defined surfaces. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21773-21784	13	49
384	Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. <i>Electrochimica Acta</i> , 2008 , 53, 2309-2321	6.7	49
383	The role of anions in oxygen reduction in neutral and basic media on gold single-crystal electrodes. <i>Journal of Solid State Electrochemistry</i> , 2003 , 7, 599-606	2.6	49
382	Understanding the CO Preoxidation and the Intrinsic Catalytic Activity of Step Sites in Stepped Pt Surfaces in Acidic Medium. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20272-20282	3.8	48
381	Electrochemical reactions of catechol, methylcatechol and dopamine at tetrahedral amorphous carbon (ta-C) thin film electrodes. <i>Diamond and Related Materials</i> , 2015 , 59, 30-39	3.5	48
380	Elucidation of the chemical nature of adsorbed species for Pt(111) in H2SO4 solutions by thermodynamic analysis. <i>Langmuir</i> , 2010 , 26, 12408-17	4	48
379	Study of the conditions for irreversible adsorption of lead at Pt(h,k,l) electrodes. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 293, 197-208		48
378	Site Selectivity for CO Adsorption and Stripping on Stepped and Kinked Platinum Surfaces in Alkaline Medium. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2903-2913	3.8	47
377	Kinetics of surface modification induced by submonolayer electrochemical oxygen adsorption on Pt(1 1 1). <i>Electrochemistry Communications</i> , 2010 , 12, 359-361	5.1	46

(2005-1995)

376	Electrochemical and in situ FTIRS studies of the CO adsorption at palladium and rhodium multilayers deposited on platinum single crystal surfaces II. Pt(100) substrate. <i>Surface Science</i> , 1995 , 344, 85-97	1.8	46	
375	Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acid oxidation. <i>Journal of Power Sources</i> , 2013 , 225, 323-329	8.9	45	
374	Electrochemical Oxidation of Pt(1 1 1) Vicinal Surfaces: Effects of Surface Structure and Specific Anion Adsorption. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15509-15515	3.8	45	
373	Thermodynamic studies of bromide adsorption at the Pt(111) electrode surface perchloric acid solutions: Comparison with other anions. <i>Journal of Electroanalytical Chemistry</i> , 2006 , 591, 149-158	4.1	45	
372	Oxalic acid adsorption and oxidation at platinum single crystal electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 563, 49-62	4.1	45	
371	Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media. Journal of the Chemical Society, Faraday Transactions, 1996 , 92, 3769		45	
370	Electrochemical behavior of irreversibly adsorbed selenium dosed from solution on Pt(h,k,l) single crystal electrodes in sulphuric and perchloric acid media. <i>Surface Science</i> , 1993 , 289, 152-162	1.8	45	
369	Towards more active and stable electrocatalysts for formic acid electrooxidation: antimony-decorated octahedral platinum nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 964-7	16.4	44	
368	Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. <i>Electrochemistry Communications</i> , 2009 , 11, 1105-1108	5.1	44	
367	Electroreduction of nitrate ions on Pt(1 1 1) electrodes modified by copper adatoms. <i>Electrochimica Acta</i> , 2010 , 56, 154-165	6.7	44	
366	The influence of anions and kink structure on the enantioselective electro-oxidation of glucose. <i>Faraday Discussions</i> , 2002 , 253-66; discussion 331-64	3.6	44	
365	Potential of zero total charge of palladium modified Pt(111) electrodes in perchloric acid solutions. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 3269-3276	3.6	44	
364	FTIRS and electrochemical characterization of NO adlayers on Pt(hkl) generated upon immersion in an acidic solution of nitrite. <i>Surface Science</i> , 1995 , 342, L1104-L1110	1.8	44	
363	Surface structure and anion effects in the oxidation of ethanol on platinum nanoparticles. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7068	13	43	
362	Specific reactivity of step sites towards CO adsorption and oxidation on platinum single crystals vicinal to Pt(111). <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11407-16	3.6	43	
361	The role of surface crystalline heterogeneities in the electrooxidation of carbon monoxide adsorbed on Rh(111) electrodes in sulphuric acid solutions. <i>Journal of Electroanalytical Chemistry</i> , 1997 , 432, 1-5	4.1	43	
360	Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy. <i>Electrochemistry Communications</i> , 2003 , 5, 56-60	5.1	43	
359	Kinetics of copper deposition on Pt(111) and Au(111) electrodes in solutions of different acidities. <i>Electrochimica Acta</i> , 2005 , 50, 5032-5043	6.7	43	

358	Induced adsorption of sulfate/bisulfate anions by submonolayer amounts of copper on deliberately stepped Pt surfaces. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 3757-3762		43
357	The behaviour of germanium adatoms irreversibly adsorbed on platinum single crystals. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 340, 349-355	4.1	43
356	Oxygen reduction on nanostructured platinum surfaces in acidic media: Promoting effect of surface steps and ideal response of Pt(111). <i>Catalysis Today</i> , 2015 , 244, 172-176	5.3	42
355	The role of the surface structure in the oxidation mechanism of methanol. <i>Journal of Electroanalytical Chemistry</i> , 2011 , 662, 43-51	4.1	42
354	Effect of Temperature on the Catalytic Ability of Electrochemically Active Biofilm as Anode Catalyst in Microbial Fuel Cells. <i>Electroanalysis</i> , 2011 , 23, 387-394	3	42
353	Spectroelectrochemical Studies of the Pt(111)/Nafion Interface Cast Electrode. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 20130-20140	3.8	42
352	Effect of deposited bismuth on the potential of maximum entropy of Pt(111) single-crystal electrodes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 21092-100	3.4	42
351	Formic acid self-poisoning on adatom-modified stepped electrodes. <i>Electrochimica Acta</i> , 2002 , 47, 3653	-8661	42
350	Study of the Pt (111) electrolyte interface in the region close to neutral pH solutions by the laser induced temperature jump technique. <i>Electrochimica Acta</i> , 2017 , 228, 667-676	6.7	41
349	Electrochemical Characterization of Clean Shape-Controlled Pt Nanoparticles Prepared in Presence of Oleylamine/Oleic Acid. <i>Electroanalysis</i> , 2015 , 27, 945-956	3	41
348	Exploring the interfacial neutral pH region of Pt(111) electrodes. <i>Electrochemistry Communications</i> , 2015 , 58, 62-64	5.1	41
347	Quantitative SNIFTIRS studies of (bi)sulfate adsorption at the Pt(111) electrode surface. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 15231-9	3.6	41
346	Rhodium adlayers on Pt(111) monocrystalline surfaces. Electrochemical behavior and electrocatalysis. <i>Electrochimica Acta</i> , 1998 , 44, 1191-1205	6.7	41
345	STM identification of silver oligomer clusters prepared by radiolysis in aqueous solution. <i>Chemical Physics Letters</i> , 1994 , 218, 115-121	2.5	41
344	Electrochemical behaviour of the Pt (111)-As system in acidic medium: adsorbed hydrogen and hydrogen reaction. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 294, 19	3-208	41
343	Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 763, 116-124	4.1	40
342	Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 707, 89-94	4.1	40
341	New electrochemically improved tetrahedral amorphous carbon films for biological applications. Diamond and Related Materials, 2014 , 49, 62-71	3.5	40

(2013-2007)

340	Adenine adsorption on Au(111) and Au(100) electrodes: Characterisation, surface reconstruction effects and thermodynamic study. <i>Electrochimica Acta</i> , 2007 , 52, 3168-3180	6.7	40	
339	Oxide growth dynamics at Pt(111) in absence of specific adsorption: A mechanistic study. <i>Electrochimica Acta</i> , 2013 , 104, 367-377	6.7	39	
338	Formic acid oxidation on Pd-modified Pt(100) and Pt(111) electrodes: A DEMS study. <i>Journal of Applied Electrochemistry</i> , 2006 , 36, 1207-1214	2.6	39	
337	Determination of the Gibbs excess of H adsorbed at a Pt(111) electrode surface in the presence of co-adsorbed chloride. <i>Journal of Electroanalytical Chemistry</i> , 2005 , 582, 76-84	4.1	39	
336	Influence of the geometry of the hanging meniscus contact on the hydrogen oxidation reaction on a Pt(111) electrode in sulphuric acid. <i>Journal of Electroanalytical Chemistry</i> , 1996 , 410, 125-127	4.1	39	
335	Thermodynamic studies of phosphate adsorption on Pt(1 1 1) electrode surfaces in perchloric acid solutions. <i>Electrochimica Acta</i> , 2009 , 54, 5836-5843	6.7	38	
334	Nitrate reduction on Pt single crystals with Pd multilayer. <i>Electrochimica Acta</i> , 2009 , 54, 2094-2101	6.7	38	
333	Spectroelectrochemical examination of the interaction between bacterial cells and gold electrodes. <i>Langmuir</i> , 2007 , 23, 6459-66	4	38	
332	Formic acid self-poisoning on bismuth-modified Pt(755) and Pt(775) electrodes. <i>Electrochemistry Communications</i> , 1999 , 1, 87-89	5.1	38	
331	CO adsorption and oxidation on Pt(111) electrodes modified by irreversibly adsorbed arsenic in sulphuric acid medium. Comparison with bismuth-modified electrodes. <i>Journal of Electroanalytical Chemistry</i> , 1995 , 393, 87-96	4.1	38	
330	Electrochemical behaviour of irreversibly adsorbed tellurium dosed from solution on Pt(h, k, l) single crystal electrodes in sulphuric and perchloric acid media. <i>Surface Science</i> , 1993 , 297, 209-222	1.8	38	
329	Effect of the nature of (100) surface sites on the electroactivity of macroscopic Pt electrodes for the electrooxidation of ammonia. <i>Electrochemistry Communications</i> , 2012 , 22, 197-199	5.1	37	
328	Electrochemistry at Platinum Single Crystal Electrodes. <i>Electroanalytical Chemistry, A Series of Advances</i> , 2011 , 75-170		37	
327	C-Type Cytochromes Wire Electricity-Producing Bacteria to Electrodes. <i>Angewandte Chemie</i> , 2008 , 120, 4952-4955	3.6	37	
326	Structural and Spectroelectrochemical Study of Carbonate and Bicarbonate Adsorbed on Pt(111) and Pd/Pt(111) Electrodes. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17928-17939	3.4	37	
325	Adsorption of CO at Palladium Monolayers Deposited on Pt(111) Electrodes. Combined Spectroelectrochemical and Theoretical Study. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7263-7271	3.4	37	
324	Oxygen reduction reaction on carbon-supported palladium nanocubes in alkaline media. <i>Electrochemistry Communications</i> , 2016 , 64, 9-13	5.1	36	
323	Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. <i>Catalysis Today</i> , 2013 , 202, 2-11	5.3	36	

322	An electrochemical study in perchloric acid medium of adlayers formed from irreversible adsorption of nitrite on Pt(100). <i>Journal of Electroanalytical Chemistry</i> , 1993 , 359, 315-323	4.1	36
321	In Situ Infrared Study of the Adsorption and Surface Acid B ase Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 9943-9952	3.8	35
320	Adsorbate interactions and phase transitions at the stepped platinum/electrolyte interface: experiment compared with Monte Carlo simulations. <i>Surface Science</i> , 2001 , 478, L339-L344	1.8	35
319	Nature of Br Adlayers on Pt(111) Single-Crystal Surfaces. Voltammetric, Charge Displacement, and ex Situ STM Experiments. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 2334-2344		35
318	Cleavage of the Clt Bond in the Ethanol Oxidation Reaction on Platinum. Insight from Experiments and Calculations. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 11590-11597	3.8	35
317	Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles. <i>Electrochemistry Communications</i> , 2011 , 13, 1194-1197	5.1	34
316	Electrochemical deposition of copper on stepped platinum surfaces in the [01] zone vicinal to the (100) plane. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 624, 228-240	4.1	34
315	Electrochemical behaviour of oxalic acid on platinum electrodes in acidic medium. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1990 , 281, 199-219		34
314	Carbon-supported shape-controlled Pt nanoparticle electrocatalysts for direct alcohol fuel cells. <i>Electrochemistry Communications</i> , 2015 , 55, 47-50	5.1	33
313	Shape-Dependent Electrocatalysis: Oxygen Reduction on Carbon-Supported Gold Nanoparticles. <i>ChemElectroChem</i> , 2014 , 1, 1338-1347	4.3	33
312	Electrochemical Oxidation of Hydrogen on Basal Plane Platinum Electrodes in Imidazolium Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11147-11155	3.8	33
311	Modeling CO Oxidation on Pt(111) Electrodes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14154-14163	3.8	33
310	Role of axially coordinated surface sites for electrochemically controlled carbon monoxide adsorption on single crystal copper electrodes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 5242-51	3.6	33
309	Nitrate reduction on Pt(111) surfaces modified by Bi adatoms. <i>Electrochemistry Communications</i> , 2009 , 11, 1760-1763	5.1	33
308	Coulostatic potential transients induced by laser heating of platinum stepped electrodes: influence of steps on the entropy of double layer formation. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 561, 15	7 -1 165	33
307	CO Adsorption and Oxidation on Pt(111) Electrodes Modified by Irreversibly Adsorbed Bismuth in Sulfuric Acid Medium. <i>Journal of Catalysis</i> , 1995 , 152, 264-274	7.3	33
306	Electrochemical behaviour of Pt(100) in various acidic media. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 338, 317-338	4.1	33
305	The behaviour of platinum single-crystal electrodes in neutral phosphate buffered solutions. Journal of Electroanalytical Chemistry, 1992, 326, 113-127	4.1	33

304	PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media. Electrochemistry Communications, 2015 , 56, 11-15	5.1	32	
303	Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 16762	2-3-6	32	
302	Formic acid electrooxidation on Bi-modified Pt(110) single crystal electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2009 , 637, 63-71	4.1	32	
301	Influence of alkali cations on the infrared spectra of adsorbed (bi)sulphate on Pt(111) electrodes. <i>Electrochemistry Communications</i> , 2006 , 8, 1577-1582	5.1	32	
300	Active centers for Cu UPDDPD in acid sulfate solution on Pt(111) electrodes. <i>Electrochimica Acta</i> , 2001 , 46, 3137-3145	6.7	32	
299	Pt catalysts modified with Bi: Enhancement of the catalytic activity for alcohol oxidation in alkaline media. <i>Journal of Catalysis</i> , 2014 , 312, 78-86	7.3	31	
298	Interaction of hydrogen peroxide with a Pt(111) electrode. <i>Electrochemistry Communications</i> , 2012 , 22, 153-156	5.1	31	
297	Electrooxidation of methanol and 2-propanol mixtures at platinum single crystal electrodes. <i>Electrochimica Acta</i> , 2009 , 54, 6576-6583	6.7	31	
296	Adenine Adsorption at Single Crystal and Thin-Film Gold Electrodes: An In Situ Infrared Spectroscopy Study. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18784-18794	3.8	31	
295	On the Electrochemical and in-Situ Fourier Transform Infrared Spectroscopy Characterization of Urea Adlayers at Pt(100) Electrodes. <i>Langmuir</i> , 1997 , 13, 2380-2389	4	31	
294	Enantiomeric electro-oxidation of d- and l-glucose on chiral gold single crystal surfaces. <i>Electrochemistry Communications</i> , 2003 , 5, 741-746	5.1	31	
293	The effect of interfacial pH on the surface atomic elemental distribution and on the catalytic reactivity of shape-selected bimetallic nanoparticles towards oxygen reduction. <i>Nano Energy</i> , 2016 , 27, 390-401	17.1	31	
292	Understanding formic acid oxidation mechanism on platinum single crystal electrodes. <i>Current Opinion in Electrochemistry</i> , 2018 , 9, 145-150	7.2	30	
291	Peroxodisulfate reduction as a probe to interfacial charge. <i>Electrochemistry Communications</i> , 2018 , 88, 43-46	5.1	30	
2 90	Tailoring properties of platinum supported catalysts by irreversible adsorbed adatoms toward ethanol oxidation for direct ethanol fuel cells. <i>Applied Catalysis B: Environmental</i> , 2013 , 140-141, 378-38	35 ^{21.8}	30	
289	Voltammetry of basal plane platinum electrodes in acetonitrile electrolytes: effect of the presence of water. <i>Langmuir</i> , 2012 , 28, 5286-94	4	30	
288	Activation Energies of the Electrooxidation of Formic Acid on Pt(100). <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18835-18841	3.8	30	
287	Effects of irreversibly adsorbed bismuth on hydrogen adsorption and evolution on Pt(111). Electrochimica Acta, 1997 , 42, 1675-1683	6.7	30	

286	Surface Sensitive Nickel Electrodeposition in Deep Eutectic Solvent. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1016-1028	6.1	29
285	Influence of the CO Adsorption Environment on Its Reactivity with (111) Terrace Sites in Stepped Pt Electrodes under Alkaline Media. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1925-1934	3.8	29
284	The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes Journal of Electroanalytical Chemistry, 1993 , 358, 287-305	4.1	29
283	Alkali metal cations and pH effects on a splitting of the unusual adsorption states of Pt(111) voltammograms in phosphate buffered solutions. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 345, 475	-48 ¹ 1	29
282	Nonuniform Synergistic Effect of Sn and Ru in Site-Specific Catalytic Activity of Pt at Bimetallic Surfaces toward CO Electro-oxidation. <i>ACS Catalysis</i> , 2017 , 7, 3434-3445	13.1	28
281	Surface Acid B ase Properties of Anion-Adsorbed Species at Pt(111) Electrode Surfaces in Contact with CO2-Containing Perchloric Acid Solutions. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16191-16199	3.8	28
280	Voltammetric characterization of stepped platinum single crystal surfaces vicinal to the (110) pole. <i>Electrochemistry Communications</i> , 2009 , 11, 1515-1518	5.1	28
279	Voltammetric characterization of Pt single crystal electrodes with basal orientations in trifluoromethanesulphonic acid. <i>Electrochemistry Communications</i> , 2008 , 10, 1695-1698	5.1	28
278	Induced Adsorption of Chloride and Bromide by Submonolayer Amounts of Copper Underpotentially Deposited on Pt(111). <i>The Journal of Physical Chemistry</i> , 1994 , 98, 5514-5521		28
277	On the pH Dependence of the Potential of Maximum Entropy of Ir(111) Electrodes. <i>Scientific Reports</i> , 2017 , 7, 1246	4.9	27
276	Electrocatalysis of H2O2 reduction/oxidation at model platinum surfaces. <i>Electrochemistry Communications</i> , 2013 , 33, 39-42	5.1	27
275	Adsorption of Glycine on Au(hkl) and Gold Thin Film Electrodes: An in Situ Spectroelectrochemical Study. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16439-16450	3.8	27
274	Electrochemical reactivity of aromatic molecules at nanometer-sized surface domains: from Pt(hkl) single crystal electrodes to preferentially oriented platinum nanoparticles. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2233-42	16.4	27
273	Electrochemical properties of palladium adlayers on Pt(1 0 0) substrates. <i>Surface Science</i> , 2004 , 573, 32-46	1.8	27
272	Pt(hkl) surface charge and reactivity. Current Opinion in Electrochemistry, 2019, 17, 97-105	7.2	26
271	Oxygen reduction at platinum electrodes: The interplay between surface and surroundings properties. <i>Current Opinion in Electrochemistry</i> , 2018 , 9, 166-172	7.2	26
270	Reaction Mechanism for Oxygen Reduction on Platinum: Existence of a Fast Initial Chemical Step and a Soluble Species Different from H2O2. <i>ACS Catalysis</i> , 2018 , 8, 7931-7943	13.1	26
269	A comparative study of the adsorption and oxidation of L-alanine and L-serine on Au(1 0 0), Au(1 1 1) and gold thin film electrodes in acid media. <i>Electrochimica Acta</i> , 2013 , 89, 72-83	6.7	26

268	Voltammetry, Charge Displacement Experiments, and Scanning Tunneling Microscopy of the Pt(100) B r System. <i>Langmuir</i> , 1997 , 13, 3016-3023	4	26	
267	Anion re-adsorption and displacement at platinum single crystal electrodes in CO-containing solutions. <i>Electrochemistry Communications</i> , 2007 , 9, 1113-1119	5.1	26	
266	Electrochemical characterization and reactivity of Pt nanoparticles supported on single-walled carbon nanotubes. <i>Electrochimica Acta</i> , 2007 , 52, 5582-5590	6.7	26	
265	Determination of different local potentials of zero charge of a PdAu(111) heterogeneous surface. <i>Electrochemistry Communications</i> , 2000 , 2, 427-430	5.1	26	
264	FTIRS and electrochemical characterization of the NO adlayer generated by immersion of a Rh(111) electrode in an acidic solution of nitrite. <i>Journal of Electroanalytical Chemistry</i> , 1995 , 393, 123-129	4.1	26	
263	Mechanistic aspects of glycerol electrooxidation on Pt(111) electrode in alkaline media. <i>Electrochemistry Communications</i> , 2018 , 86, 149-152	5.1	26	
262	On the activation energy of the formic acid oxidation reaction on platinum electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 742, 90-96	4.1	25	
261	Oxygen electroreduction on carbon-supported Pd nanocubes in acid solutions. <i>Electrochimica Acta</i> , 2016 , 188, 301-308	6.7	25	
260	Opportunities behind the unusual ability of geobacter sulfurreducens for exocellular respiration and electricity production. <i>Energy and Environmental Science</i> , 2011 , 4, 2066	35.4	25	
259	Irreversibly adsorbed As at full blockage on Pt(111) electrodes: Surface stoichiometry. <i>Journal of Electroanalytical Chemistry</i> , 1997 , 434, 121-127	4.1	25	
258	Study of carbon monoxide adsorption and oxidation on Pt(111) by using an electrochemical impinging jet cell. <i>Electrochimica Acta</i> , 1998 , 44, 1069-1075	6.7	25	
257	Copper underpotential deposition at high index single crystal surfaces of Au. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 570, 157-161	4.1	25	
256	Co adsorption and oxidation on pt(111) electrodes modified by irreversibly adsorbed selenium and tellurium. <i>Journal of Electroanalytical Chemistry</i> , 1996 , 412, 165-174	4.1	25	
255	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies <i>Chemical Reviews</i> , 2022 ,	68.1	25	
254	Investigating interfacial parameters with platinum single crystal electrodes. <i>Russian Journal of Electrochemistry</i> , 2017 , 53, 227-236	1.2	24	
253	Rapid screening of silver nanoparticles for the catalytic degradation of chlorinated pollutants in water. <i>Applied Catalysis B: Environmental</i> , 2015 , 163, 554-563	21.8	24	
252	Formic acid electrooxidation on thallium-decorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 13616-24	3.6	24	
251	Fundamental aspects of HCOOH oxidation at platinum single crystal surfaces with basal orientations and modified by irreversibly adsorbed adatoms. <i>Journal of Solid State Electrochemistry</i> , 2014 18 1181-1193	2.6	24	

250	Study of dopamine reactivity on platinum single crystal electrode surfaces. <i>Electrochimica Acta</i> , 2013 , 109, 577-586	6.7	24
249	Loading effect of carbon-supported platinum nanocubes on oxygen electroreduction. <i>Electrochimica Acta</i> , 2017 , 251, 155-166	6.7	24
248	An in situ infrared and electrochemical study of oxalic acid adsorption at stepped platinum single crystal electrodes in the zone. <i>Electrochimica Acta</i> , 2004 , 49, 1257-1269	6.7	24
247	Preparation and electrocatalytic activity of Rh adlayers on Pt(100) electrodes: reduction of nitrous oxide. <i>Electrochemistry Communications</i> , 2001 , 3, 659-664	5.1	24
246	Study of the interface Pt(111)/ [Emmim][NTf2] using laser-induced temperature jump experiments. <i>Electrochemistry Communications</i> , 2015 , 55, 39-42	5.1	23
245	Electrochemical properties of poly(3,4-ethylenedioxythiophene) grown on Pt(111) in imidazolium ionic liquids. <i>RSC Advances</i> , 2014 , 4, 3383-3391	3.7	23
244	The voltammetry of surfaces vicinal to Pt{110}: Structural complexity simplified by CO cooling. Journal of Electroanalytical Chemistry, 2017 , 793, 137-146	4.1	23
243	Borohydride electro-oxidation on Pt single crystal electrodes. <i>Electrochemistry Communications</i> , 2015 , 51, 144-147	5.1	23
242	Mechanism of nitrate electroreduction on Pt(100). Russian Journal of Electrochemistry, 2012, 48, 302-31	51.2	23
241	Monte Carlo simulation of CO adlayers electrooxidation on Pt(111). Surface Science, 1998 , 416, 371-383	1.8	23
240	Fullerene monolayers adsorbed on high index gold single crystal surfaces. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 619	3.6	23
239	Urea Adsorption on Platinum Single Crystal Stepped Surfaces. <i>Langmuir</i> , 2001 , 17, 8260-8269	4	23
238	Auger electron spectroscopy, low-energy electron diffraction, and electrochemistry of carbon monoxide on a platinum(100) electrode. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 9730-9735		23
237	The inhibition of hydrogen peroxide reduction at low potentials on Pt(111): Hydrogen adsorption or interfacial charge?. <i>Electrochemistry Communications</i> , 2017 , 85, 32-35	5.1	22
236	In-situ STM and AFM Studies on Electrochemical Interfaces in imidazolium-based ionic liquids. <i>Electrochimica Acta</i> , 2019 , 309, 11-17	6.7	22
235	Revisiting the Atomistic Structures at the Interface of Au(111) Electrode-Sulfuric Acid Solution. Journal of the American Chemical Society, 2020 , 142, 9439-9446	16.4	22
234	Thermodynamic evidence for K(+)-SO4(2-) ion pair formation on Pt(111). New insight into cation specific adsorption. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 12146-52	3.6	22
233	Electrochemical properties of thin films of polythiophene polymerized on Basal plane platinum electrodes in nonaqueous media. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 1899-905	3.4	22

Anion and electrode surface structure effects on the deposition of metal monolayers: electrochemical and time-resolved surface diffraction studies. <i>Electrochimica Acta</i> , 1998 , 43, 2899-2909	6.7	22
Polymerization of polypyrrole on single crystal platinum electrodes: a surface structure sensitive reaction. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 7022-30	3.6	22
Ethylene adsorption and oxidation on Pt(h k l) in acidic media. Surface Science, 2008, 602, 84-94	1.8	22
New probes to surface free charge at electrochemical interfaces with platinum electrodes. <i>Current Opinion in Electrochemistry</i> , 2019 , 14, 16-22	7.2	22
Oxygen Reduction on Platinum Surfaces in Acid Media: Experimental Evidence of a CECE/DISP Initial Reaction Path. <i>ACS Catalysis</i> , 2019 , 9, 2238-2251	13.1	21
Evidence of Local pH Changes during Ethanol Oxidation at Pt Electrodes in Alkaline Media. <i>ChemElectroChem</i> , 2015 , 2, 1254-1258	4.3	21
Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater. <i>Energies</i> , 2015 , 8, 14064-14077	3.1	21
Peroxodisulphate reduction as a novel probe for the study of platinum single crystal/solution interphases. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 612, 269-276	4.1	21
Spectroscopic Study of the Nitric Oxide Adlayers Formed from Nitrous Acid Solutions on Palladium-Covered Platinum Single-Crystal Electrodes. <i>Langmuir</i> , 2000 , 16, 4695-4705	4	21
Disentangling Catalytic Activity at Terrace and Step Sites on Selectively Ru-Modified Well-Ordered Pt Surfaces Probed by CO Electro-oxidation. <i>ACS Catalysis</i> , 2016 , 6, 2997-3007	13.1	21
Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: New insights. <i>Electrochemistry Communications</i> , 2017 , 78, 51-55	5.1	20
Characterization of the interfaces between Au(hkl) single crystal basal plane electrodes and [Emmim][Tf 2 N] ionic liquid. <i>Electrochemistry Communications</i> , 2016 , 62, 44-47	5.1	20
On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 716, 16-22	4.1	20
New insight into the electro-oxidation of the irreversibly chemisorbed bismuth on Pt(111) through temperature-dependent research. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 519, 111-122	4.1	20
Adsorption behavior of acetonitrile on platinum and gold electrodes of various structures in solution of 0.5M H2SO4. <i>Electrochimica Acta</i> , 2009 , 54, 3692-3699	6.7	19
Separation of Temperature Effects on Double-Layer and Charge-Transfer Processes for Platinum Solution Interphases. Entropy of Formation of the Double Layer and Absolute Molar Entropy of Adsorbed Hydrogen and OH on Pt(111). <i>Journal of Physical Chemistry C</i> , 2009 , 113, 19913-19	3.8 1 925	19
Two-Dimensional Effects on the in Situ Infrared Spectra of CO Adsorbed at Palladium-Covered Pt(111) Electrode Surfaces. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 2018-2028	3.4	19
Irreversible tin adsorption on polyoriented gold electrodes. <i>Journal of Electroanalytical Chemistry</i> and Interfacial Electrochemistry, 1988 , 256, 455-462		19
	Polymerization of polypyrrole on single crystal platinum electrodes: a surface structure sensitive reaction. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 7022-30 Ethylene adsorption and oxidation on Pt(h k l) in acidic media. <i>Surface Science</i> , 2008 , 602, 84-94 New probes to surface free charge at electrochemical interfaces with platinum electrodes. <i>Current Opinion in Electrochemistry</i> , 2019 , 14, 16-22 Oxygen Reduction on Platinum Surfaces in Acid Media: Experimental Evidence of a CECE/DISP Initial Reaction Path. <i>ACS Catalysis</i> , 2019 , 9, 2238-2251 Evidence of Local pH Changes during Ethanol Oxidation at Pt Electrodes in Alkaline Media. <i>ChemElectroChem</i> , 2015 , 2, 1254-1258 Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater. <i>Energies</i> , 2015 , 8, 14064-14077 Peroxodisulphate reduction as a novel probe for the study of platinum single crystal/solution interphases. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 612, 269-276 Spectroscopic Study of the Nitric Oxide Adlayers Formed from Nitrous Acid Solutions on Palladium-Covered Platinum Single-Crystal Electrodes. <i>Langmuir</i> , 2000 , 16, 4695-4705 Disentangling Catalytic Activity at Terrace and Step Sites on Selectively Ru-Modified Well-Ordered Pt Surfaces Probed by CO Electro-oxidation. <i>ACS Catalysis</i> , 2016 , 6, 2997-3007 Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: New insights. <i>Electrochemistry Communications</i> , 2017 , 78, 51-55 Characterization of the interfaces between Au(fk) single crystal basal plane electrodes and [Emmim][Tf 2 N] ionic liquid. <i>Electrochemistry Communications</i> , 2016 , 62, 44-47 On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 716, 16-22 New insight into the electro-oxidation of the irreversibly chemisorbed bismuth on Pt(111) through temperature-dependent research. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 519,	electrochemical and time-resolved surface diffraction studies. <i>Electrochimica Acta</i> , 1998, 43, 2899-2909 ⁶⁻⁷ Polymerization of polypyrrole on single crystal platinum electrodes: a surface structure sensitive reaction. <i>Physical Chemistry Chemical Physics</i> , 2008, 10, 7022-30 Ethylene adsorption and oxidation on Pt(h k l) in acidic media. <i>Surface Science</i> , 2008, 602, 84-94 1.8 New probes to surface free charge at electrochemical interfaces with platinum electrodes. <i>Current Opinion in Electrochemistry</i> , 2019, 14, 16-22 Oxygen Reduction on Platinum Surfaces in Acid Media: Experimental Evidence of a CECE/DISP Initial Reaction Path. <i>AcS Catalysis</i> , 2019, 9, 2238-2251 Evidence of Local pH Changes during Ethanol Oxidation at Pt Electrodes in Alkaline Media. <i>ChemElectroChem</i> , 2015, 2, 1254-1258 Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater. <i>Energies</i> , 2015, 8, 14064-14077 Peroxodisulphate reduction as a novel probe for the study of platinum single crystal/solution interphases. <i>Journal of Electroanalytical Chemistry</i> , 2008, 612, 269-276 Spectroscopic Study of the Nitric Oxide Adlayers Formed from Nitrous Acid Solutions on Palladium-Covered Platinum Single-Crystal Electrodes. <i>Langmuir</i> , 2000, 16, 4695-4705 4 Disentangling Catalytic Activity at Terrace and Step Sites on Selectively Ru-Modified Well-Ordered Pt Surfaces Probed by CO Electro-oxidation. <i>ACS Catalysis</i> , 2016, 6, 2997-3007 Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: New insights. <i>Electrochemistry Communications</i> , 2017, 78, 51-55 Characterization of the interfaces between Au(hkl) single crystal basal plane electrodes and [Emmim][TF 2 N] ionic liquid. <i>Electrochemistry Communications</i> , 2016, 62, 44-47 On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. <i>Journal of Electroanalytical Chemistry</i> , 2014, 716, 16-22 New insight into the electro-oxidation of the irreversibly chemisorbed bismuth on Pt(1

214	Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium. <i>Langmuir</i> , 2017 , 33, 865-871	4	18	
213	Trimetallic catalyst based on PtRu modified by irreversible adsorption of Sb for direct ethanol fuel cells. <i>Journal of Catalysis</i> , 2015 , 329, 69-77	7.3	18	
212	Characterization of (111) surface tailored Pt nanoparticles by electrochemistry and X-ray powder diffraction. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 528, 83-90	5.3	18	
211	Determination of the entropy of formation of the Pt(111) perchloric acid solution interface. Estimation of the entropy of adsorbed hydrogen and OH species. <i>Journal of Solid State Electrochemistry</i> , 2008 , 12, 387-398	2.6	18	
210	Carbon monoxide oxidation and nitrous oxide reduction on Rh/Pt(1 1 1) electrodes. <i>Electrochimica Acta</i> , 2004 , 49, 1195-1208	6.7	18	
209	The role of the crystalline surface structure of platinum electrodes in the electrooxidation of d-glucose in acid solutions. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1991 , 316, 175-197		18	
208	The role of formic acid/formate equilibria in the oxidation of formic acid on Pt (111). <i>Electrochemistry Communications</i> , 2019 , 98, 10-14	5.1	18	
207	Oxidation of ethanol on platinum nanoparticles: surface structure and aggregation effects in alkaline medium. <i>Journal of Solid State Electrochemistry</i> , 2016 , 20, 1095-1106	2.6	17	
206	Heterogeneous electrocatalysis of formic acid oxidation on platinum single crystal electrodes. <i>Current Opinion in Electrochemistry</i> , 2017 , 4, 26-31	7.2	17	
205	Structure and morphology of shape-controlled Pd nanocrystals. <i>Journal of Applied Crystallography</i> , 2015 , 48, 1534-1542	3.8	17	
204	Effect of the Surface Structure of Pt(100) and Pt(110) on the Oxidation of Carbon Monoxide in Alkaline Solution: an FTIR and Electrochemical Study. <i>Electrocatalysis</i> , 2011 , 2, 242-253	2.7	17	
203	On the apparent lack of preferential site occupancy and electrooxidation of CO adsorbed at low coverage onto stepped platinum surfaces. <i>Electrochemistry Communications</i> , 2011 , 13, 338-341	5.1	17	
202	Electrochemical reactivity in nanoscale domains: O2 reduction on a fullerene modified gold surface. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 1293-9	3.6	17	
201	Tellurium adatoms as an in-situ surface probe of (111) two-dimensional domains at platinum surfaces. <i>Langmuir</i> , 2006 , 22, 10329-37	4	17	
200	Temperature-Dependence of the Electro-oxidation of the Irreversibly Chemisorbed As on Pt(111). <i>Langmuir</i> , 2001 , 17, 3030-3038	4	17	
199	Elucidating the Structure of the Cu-Alkaline Electrochemical Interface with the Laser-Induced Temperature Jump Method. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 23253-23259	3.8	17	
198	Glycerol electrooxidation on Pd modified Au surfaces in alkaline media: Effect of the deposition method. <i>Journal of Chemical Physics</i> , 2019 , 150, 041703	3.9	17	
197	Citrate-Coated, Size-Tunable Octahedral Platinum Nanocrystals: A Novel Route for Advanced Electrocatalysts. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 41608-41617	9.5	17	

(2017-2017)

196	Site-specific catalytic activity of model platinum surfaces in different electrolytic environments as monitored by the CO oxidation reaction. <i>Journal of Catalysis</i> , 2017 , 345, 216-227	7.3	16	
195	On the quality and stability of preferentially oriented (100) Pt nanoparticles: An electrochemical insight. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 808, 433-438	4.1	16	
194	The activity of ALD-prepared PtCo catalysts for ethanol oxidation in alkaline media. <i>Journal of Catalysis</i> , 2014 , 309, 38-48	7.3	16	
193	Synthesis and electrocatalytic properties of H2SO4 -induced (100) Pt nanoparticles prepared in water-in-oil microemulsion. <i>ChemPhysChem</i> , 2014 , 15, 1997-2001	3.2	16	
192	Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes. <i>PLoS ONE</i> , 2014 , 9, e87995	3.7	16	
191	Mechanistic changes observed in heavy water for nitrate reduction reaction on palladium-modified Pt(hkl) electrodes. <i>Chemical Science</i> , 2012 , 3, 3063	9.4	16	
190	Positive shift of the potential of zero total charge of stepped Pt(1 1 1) electrodes decorated by irreversibly adsorbed bismuth. <i>Electrochemistry Communications</i> , 2001 , 3, 590-594	5.1	16	
189	Bromine monolayer adsorption on Pt(110) surfaces. <i>Journal of Electroanalytical Chemistry</i> , 1999 , 467, 11-19	4.1	16	
188	Electrochemical behaviour of squaric acid on single-crystal platinum electrodes with basal orientations in aqueous sulphuric acid medium. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 334, 291-	30 ^{4.1}	16	
187	Effect of surface long-range order in aniline interaction with Pt(111) electrodes in acid medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990 , 288, 277-283		16	
186	Hydrogen peroxide and oxygen reduction studies on Pt stepped surfaces: Surface charge effects and mechanistic consequences. <i>Electrochimica Acta</i> , 2020 , 334, 135452	6.7	16	
185	Electrocatalytic Oxidation of Glycerol on Platinum Single Crystals in Alkaline Media. <i>ChemElectroChem</i> , 2019 , 6, 4238-4245	4.3	15	
184	Why the activity of the hydrogen oxidation reaction on platinum decreases as pH increases. <i>Electrochimica Acta</i> , 2020 , 354, 136620	6.7	15	
183	Role of the interfacial water structure on electrocatalysis: Oxygen reduction on Pt(1 1 1) in methanesulfonic acid. <i>Catalysis Today</i> , 2016 , 262, 95-99	5.3	15	
182	Adatom modified shape-controlled platinum nanoparticles towards ethanol oxidation. <i>Electrochimica Acta</i> , 2016 , 196, 270-279	6.7	15	
181	The breaking of the CC bond in ethylene glycol oxidation at the Pt(111) electrode and its vicinal surfaces. <i>Electrochemistry Communications</i> , 2014 , 45, 40-43	5.1	15	
180	Electrochemical features of Pt(S)[n(110)[1100)] surfaces in acidic media. <i>Electrochemistry Communications</i> , 2013 , 34, 291-294	5.1	15	
179	Understanding CO oxidation reaction on platinum nanoparticles. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 793, 126-136	4.1	15	

178	Methodical aspects of studying the electroreduction of nitrate on modified single crystal Pt(hkl) + Cu electrodes. <i>Russian Journal of Electrochemistry</i> , 2009 , 45, 1052-1063	1.2	15
177	Reduction of CO2 on bismuth modified Pt(1 1 0) single-crystal surfaces. Effect of bismuth and poisoning intermediates on the rate of hydrogen evolution. <i>Electrochimica Acta</i> , 2011 , 56, 4451-4456	6.7	15
176	Bulk CO oxidation on platinum electrodes vicinal to the Pt(111) surface. <i>Journal of Solid State Electrochemistry</i> , 2007 , 11, 1531-1539	2.6	15
175	Mechanism of copper underpotential deposition at Pt(hkl)-electrodes: Quantum-chemical modelling. <i>Russian Journal of Electrochemistry</i> , 2008 , 44, 697-708	1.2	15
174	Long-range effects on palladium deposited on Pt(1 1 1). Electrochemistry Communications, 2002, 4, 379-	-3583	15
173	Anion Effects and Induced Adsorption of Chloride by Submonolayer Amounts of Copper on Deliberately Stepped Platinum Surfaces. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 5932-5939	3.4	15
172	Urea Adsorption at Rhodium Single-Crystal Electrodes. <i>Langmuir</i> , 2000 , 16, 10376-10384	4	15
171	The Underpotential Deposition of Copper on Pt(311): Site Selective Deposition and Anion Effects. <i>Langmuir</i> , 1994 , 10, 4315-4323	4	15
170	Unraveling the Nature of Active Sites in Ethanol Electro-oxidation by Site-Specific Marking of a Pt Catalyst with Isotope-Labeled CO. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1206-1210	6.4	14
169	Why Citrate Shapes Tetrahedral and Octahedral Colloidal Platinum Nanoparticles in Water. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 19004-19014	3.8	14
168	Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide on platinum single crystal electrodes. <i>Electrochemistry Communications</i> , 2014 , 46, 84-86	5.1	14
167	IR and electrochemical synthesis and characterization of thin films of PEDOT grown on platinum single crystal electrodes in [EMMIM]Tf2N ionic liquid. <i>Beilstein Journal of Organic Chemistry</i> , 2015 , 11, 348-57	2.5	14
166	Role of oxygen-containing species at Pt(111) on the oxygen reduction reaction in acid media. Journal of Solid State Electrochemistry, 2015 , 19, 2831-2841	2.6	14
165	The underpotential deposition of cadmium on Pt(1 1 1): effect of the anions and CO displacement experiments. <i>Journal of Electroanalytical Chemistry</i> , 2003 , 554-555, 145-156	4.1	14
164	Thermodynamic properties of hydrogenWater adsorption at terraces and steps of Pt(111) vicinal surface electrodes. <i>Surface Science</i> , 2016 , 646, 269-281	1.8	13
163	In Situ UV-Visible Reflectance Spectroscopy on Single Crystal Pt(111) Microfacets. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, E9		13
162	FTIR study of the electrochemical behaviour of squaric acid on polycrystalline platinum electrodes in 0.5 M H2SO4. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 352, 345-352	4.1	13
161	The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III) / Cr(II). <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 271, 127-139		13

160	Electrocatalytic oxidation of L(+)-ascorbic acid on single crystal Pt surfaces modified by irreversibly adsorbed Bi. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 260, 237-244		13	
159	Coherent Bragg imaging of 60 nm Au nanoparticles under electrochemical control at the NanoMAX beamline. <i>Journal of Synchrotron Radiation</i> , 2019 , 26, 1830-1834	2.4	13	
158	Acetonitrile Adsorption on Pt Single-Crystal Electrodes and Its Effect on Oxygen Reduction Reaction in Acidic and Alkaline Aqueous Solutions. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 2300-231	3 ^{3.8}	13	
157	Comprehensive Study of the Enzymatic Catalysis of the Electrochemical Oxygen Reduction Reaction (ORR) by Immobilized Copper Efflux Oxidase (CueO) From. <i>Frontiers in Chemistry</i> , 2018 , 6, 358	5	13	
156	Investigating the M(hkl) ionic liquid interface by using laser induced temperature jump technique. <i>Electrochimica Acta</i> , 2019 , 311, 30-40	6.7	12	
155	State of the art in the electrochemical characterization of the surface structure of shape-controlled Pt, Au, and Pd nanoparticles. <i>Current Opinion in Electrochemistry</i> , 2020 , 22, 65-71	7.2	12	
154	Crystallographic orientation and electrode nature are key factors for electric current generation by Geobacter sulfurreducens. <i>Bioelectrochemistry</i> , 2014 , 98, 11-9	5.6	12	
153	Electroreduction of Oxygen on PdPt Alloy Nanocubes in Alkaline and Acidic Media. <i>ChemElectroChem</i> , 2017 , 4, 2547-2555	4.3	12	
152	Real-time monitoring of electrochemically active biofilm developing behavior on bioanode by using EQCM and ATR/FTIR. <i>Sensors and Actuators B: Chemical</i> , 2015 , 209, 781-789	8.5	12	
151	Pd-Modified Shape-Controlled Pt Nanoparticles Towards Formic Acid Electrooxidation. <i>Electrocatalysis</i> , 2012 , 3, 313-323	2.7	12	
150	Nitrite Reduction on Bismuth Modified Pt(111) Surfaces in Different Electrolytic Media. <i>Electrocatalysis</i> , 2011 , 2, 255-262	2.7	12	
149	Pd Adatom Decorated (100) Preferentially Oriented Pt Nanoparticles for Formic Acid Electrooxidation. <i>Angewandte Chemie</i> , 2010 , 122, 7152-7155	3.6	12	
148	Kinetics of adenine adsorption on Au(111) electrodes: An impedance study. <i>Electrochimica Acta</i> , 2010 , 55, 3301-3306	6.7	12	
147	Identity of the Most and Least Active Sites for Activation of the Pathways for CO2 Formation from the Electro-oxidation of Methanol and Ethanol on Platinum. <i>ACS Catalysis</i> , 2020 , 10, 543-555	13.1	12	
146	Electrocatalytic enhancement of formic acid oxidation reaction by acetonitrile on well-defined platinum surfaces. <i>Electrochimica Acta</i> , 2019 , 295, 835-845	6.7	12	
145	Understandings on the Inhibition of Oxygen Reduction Reaction by Bromide Adsorption on Pt(111) Electrodes at Different pH Values. <i>Journal of the Electrochemical Society</i> , 2018 , 165, J3045-J3051	3.9	12	
144	Surface Electrochemistry with Pt Single-Crystal Electrodes. <i>Advances in Electrochemical Science and Engineering</i> , 2017 , 1-57		11	
143	Electrocatalytic oxidation and reduction of H2O2 on Au single crystals. <i>Russian Journal of Electrochemistry</i> , 2017 , 53, 1029-1041	1.2	11	

142	Electrochemical reduction of CO2 in water-acetonitrile mixtures on nanostructured Cu electrode. <i>Electrochemistry Communications</i> , 2015 , 61, 74-77	5.1	11
141	Surface Structure Characterization of Shape and Size Controlled Pd Nanoparticles by Cu UPD: A Quantitative Approach. <i>Frontiers in Chemistry</i> , 2019 , 7, 527	5	11
140	Temperature effects on platinum single-crystal electrodes. <i>Russian Journal of Electrochemistry</i> , 2012 , 48, 271-280	1.2	11
139	SERS on (111) Surface Nanofacets at Pt Nanoparticles: The Case of Acetaldehyde Oxime Reduction. Journal of Physical Chemistry C, 2012 , 116, 10781-10789	3.8	11
138	Electrochemical and electrocatalytic properties of thin films of poly(3,4-ethylenedioxythiophene) grown on basal plane platinum electrodes. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14391-9	3.6	11
137	Unusually High Activity of Pt Islands on Rh(1 1 1) Electrodes for Ethanol Oxidation. <i>ChemCatChem</i> , 2013 , 5, 1350-1353	5.2	11
136	Kinetic study of CO oxidation on step decorated Pt(1 1 1) vicinal single crystal electrodes. <i>Electrochimica Acta</i> , 2011 , 56, 5993-6000	6.7	11
135	Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 1149-1159	2.3	11
134	Selective electrocatalysis of acetaldehyde oxime reduction on (111) sites of platinum single crystal electrodes and nanoparticles surfaces. <i>Journal of Solid State Electrochemistry</i> , 2008 , 12, 575-581	2.6	11
133	Preparation and electrochemical behavior of ordered rh adlayers on Pt(100) electrodes. <i>Langmuir</i> , 2005 , 21, 7439-48	4	11
132	Reactivity of pyrrole pigments. part 6. <i>Tetrahedron</i> , 1985 , 41, 1713-1720	2.4	11
131	Analysis of the anodic processes of 8-hydroxyquinoline in AcOH-AcONa buffer on mercury. <i>Collection of Czechoslovak Chemical Communications</i> , 1984 , 49, 481-489		11
130	Underpotential deposition of Nickel on platinum single crystal electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 819, 391-400	4.1	11
129	Potential oscillations during electro-oxidation of ethanol on platinum in alkaline media: The role of surface sites. <i>Electrochemistry Communications</i> , 2016 , 72, 83-86	5.1	10
128	Kinetics and mechanism of nitrate and nitrite electroreduction on Pt(100) electrodes modified by copper adatoms. <i>Russian Journal of Electrochemistry</i> , 2013 , 49, 285-293	1.2	10
127	Formic acid electrooxidation on thallium modified platinum single crystal electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 800, 82-88	4.1	10
126	Electrochemical properties of palladium adlayers on Pt(110) substrates. <i>Journal of Electroanalytical Chemistry</i> , 2011 , 660, 276-284	4.1	10
125	Enhanced electrochemical reversibility of ultrathin aniline oligomer films grown on Pt(111). <i>Electrochemistry Communications</i> , 2011 , 13, 1304-1308	5.1	10

(2016-2006)

124	Kinetics of underpotential deposition and nucleation of copper on the Pt(111) face in the presence of acetonitrile. <i>Russian Journal of Electrochemistry</i> , 2006 , 42, 381-392	1.2	10
123	The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 1999 , 467, 20-29	4.1	10
122	Effects of the Interfacial Structure on the Methanol Oxidation on Platinum Single Crystal Electrodes. <i>Surfaces</i> , 2019 , 2, 177-192	2.9	9
121	New insights into the Pt(hkl)-alkaline solution interphases from the laser induced temperature jump method. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 872, 114068	4.1	9
120	Bromide Adsorption on Pt(111) over a Wide Range of pH: Cyclic Voltammetry and CO Displacement Experiments. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 18562-18569	3.8	9
119	The Role of PtOH on H2O2 Interactions with Platinum Surfaces in an Electrochemical Environment. <i>ChemElectroChem</i> , 2014 , 1, 55-58	4.3	9
118	The behavior of HBF4 at Pt single crystal electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2010 , 646, 100-106	4.1	9
117	Model system for the study of 2D phase transitions and supramolecular interactions at electrified interfaces: hydrogen-assisted reductive desorption of catechol-derived adlayers from Pt(111) single-crystal electrodes. <i>Langmuir</i> , 2008 , 24, 3551-61	4	9
116	Hydrogen-assisted and CO-assisted reductive desorption of hydroquinone-derived adlayers from Pt(111) single crystal electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2006 , 594, 143-151	4.1	9
115	CO oxidation on Pt-modified Rh(111) electrodes. <i>ChemPhysChem</i> , 2005 , 6, 1522-9	3.2	9
114	Stark effect or coverage dependence? Disentangling the EC-SEIRAS vibrational shift of sulfate on Au(111). <i>Journal of Chemical Physics</i> , 2019 , 150, 041709	3.9	9
113	Analysis of catechol, 4-methylcatechol and dopamine electrochemical reactions on different substrate materials and pH conditions. <i>Electrochimica Acta</i> , 2018 , 292, 309-321	6.7	9
112	Oxide formation as probe to investigate the competition between water and alcohol molecules for OH species adsorbed on platinum. <i>Electrochimica Acta</i> , 2019 , 317, 694-700	6.7	8
111	ATR-SEIRAS study of CO adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1 M H2SO4. <i>Electrochimica Acta</i> , 2015 , 176, 1202-1213	6.7	8
110	Interaction of water with methanesulfonic acid on Pt single crystal electrodes. <i>Electrochemistry Communications</i> , 2015 , 50, 47-50	5.1	8
109	Single Crystal Electrochemistry as an In Situ Analytical Characterization Tool. <i>Annual Review of Analytical Chemistry</i> , 2020 , 13, 201-222	12.5	8
108	The Role of Surface Sites on the Oscillatory Oxidation of Methanol on Stepped Pt[n(111) [(110)] Electrodes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 10993-11004	3.8	8
107	Cu UPD at Pt(100) and stepped faces Pt(610), Pt(410) of platinum single crystal electrodes. <i>Russian Journal of Electrochemistry</i> , 2016 , 52, 890-900	1.2	8

106	Electrochemical detection of cytosine and 5-methylcytosine on Au(111) surfaces. <i>Electrochemistry Communications</i> , 2016 , 65, 27-30	5.1	8
105	Domain-selective reactivity of hydroquinone-derived adlayers at basal Pt(hkl) single-crystal electrodes. <i>Langmuir</i> , 2009 , 25, 10337-44	4	8
104	Kinetics of copper UPD on stepped platinum single crystals in the presence of acetonitrile. <i>Electrochemistry Communications</i> , 2008 , 10, 502-505	5.1	8
103	Spontaneous deposition of Sn on Au(111). An in situ STM study. <i>Electrochemistry Communications</i> , 2008 , 10, 1583-1586	5.1	8
102	Underpotential electrodeposition of Ag on iodine-covered Pt single-crystal electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2000 , 488, 32-41	4.1	8
101	Voltammetric and subtractively normalized interfacial FTIR study of the adsorption and oxidation of L(+)-ascorbic acid on Pt electrodes in acid medium: effect of Bi adatoms. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 609-615		8
100	Toward a quantitative theoretical method for infrared and Raman spectroscopic studies on single-crystal electrode/liquid interfaces. <i>Chemical Science</i> , 2019 , 11, 1425-1430	9.4	8
99	Spectroelectrochemical detection of specifically adsorbed cyanurate anions at gold electrodes with (111) orientation in contact with cyanate and cyanuric acid neutral solutions. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 800, 167-175	4.1	7
98	Structure, surface chemistry and electrochemical de-alloying of bimetallic PtxAg100-x nanoparticles: Quantifying the changes in the surface properties for adsorption and electrocatalytic transformation upon selective Ag removal. <i>Journal of Electroanalytical Chemistry</i> ,	4.1	7
97	2017, 793, 164-173 Investigation of the interfacial properties of platinum stepped surfaces using peroxodisulfate reduction as a local probe. <i>Electrochimica Acta</i> , 2019, 307, 553-563	6.7	7
96	Use of CO as a Cleaning Tool of Highly Active Surfaces in Contact with Ionic Liquids: Ni Deposition on Pt(111) Surfaces in IL. <i>ACS Applied Energy Materials</i> , 2018 , 1, 4617-4625	6.1	7
95	Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detection. <i>Electrochimica Acta</i> , 2017 , 251, 60-70	6.7	7
94	Chronoamperometric Study of Ammonia Oxidation in a Direct Ammonia Alkaline Fuel Cell under the Influence of Microgravity. <i>Microgravity Science and Technology</i> , 2017 , 29, 253-261	1.6	7
93	A voltammetric study of glyoxylic acid behaviour on platinum single-crystal electrodes in sulphuric acid medium. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 347, 355-370	4.1	7
92	Polarographic and voltammetric studies of 8-hydroxyquinoline and 8-hydroxy- 5-quinolinesulfonic acid in aqueous solutionsBasic media. <i>Electrochimica Acta</i> , 1982 , 27, 1475-1479	6.7	7
91	Glucose electro-oxidation on Pt(100) in phosphate buffer solution (pH 7): A mechanistic study. <i>Electrochimica Acta</i> , 2020 , 354, 136765	6.7	7
90	Investigation of reactivity of Pt basal planes towards glucose electro-oxidation in neutral solution (pH 7): structure-sensitivity dependence and mechanistic study. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 878, 114549	4.1	7
89	Recent Advances in the Use of Shape-Controlled Metal Nanoparticles in Electrocatalysis. <i>Nanostructure Science and Technology</i> , 2016 , 31-92	0.9	7

88	Determination of Specific Electrocatalytic Sites in the Oxidation of Small Molecules on Crystalline Metal Surfaces. <i>Topics in Current Chemistry</i> , 2019 , 377, 5	7.2	7
87	Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH)-Modified Cu(111). ACS Catalysis, 2021 , 11, 10324-10332	13.1	7
86	Spectroelectrochemical behavior of 4-aminobenzenethiol on nanostructured platinum and silver electrodes. <i>Surface Science</i> , 2015 , 631, 213-219	1.8	6
85	Recent progress on oxygen and hydrogen peroxide reduction reactions on Pt single crystal electrodes. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 732-738	11.3	6
84	Pt-grown carbon nanofibers for detection of hydrogen peroxide <i>RSC Advances</i> , 2018 , 8, 12742-12751	3.7	6
83	Regularities of nitrate electroreduction on Pt(S)[n(100)x(110)] stepped platinum single crystals modified by copper adatoms. <i>Electrochimica Acta</i> , 2018 , 278, 165-175	6.7	6
82	DFT and spectroelectrochemical study of cyanate adsorption on gold single crystal electrodes in neutral medium. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 793, 147-156	4.1	6
81	Photoemission studies of chiral metal surfaces using circularly polarized synchrotron radiation. <i>Physical Review B</i> , 2001 , 64,	3.3	6
80	Voltammetric study of the electrochemical behaviour of glycolic acid solutions in sulphuric acid on platinum single-crystal electrodes with basal orientations. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 323, 303-318	4.1	6
79	Anodic behaviour of a mercury electrode in aqueous 8-hydroxyquinoline solutions. <i>Electrochimica Acta</i> , 1982 , 27, 1003-1006	6.7	6
78	Role of OH Intermediates during the Au Oxide Electro-Reduction at Low pH Elucidated by Electrochemical Surface-Enhanced Raman Spectroscopy and Implicit Solvent Density Functional Theory. <i>ACS Catalysis</i> , 2020 , 10, 12716-12726	13.1	6
77	New insight on the behavior of the irreversible adsorption and underpotential deposition of thallium on platinum (111) and vicinal surfaces in acid electrolytes. <i>Electrochimica Acta</i> , 2015 , 151, 319-3	32 3	5
76	A conventional symmetric biosupercapacitor based on rusticyanin modified gold electrodes. Journal of Electroanalytical Chemistry, 2018 , 816, 253-258	4.1	5
75	Interfacial Study of Nickel-Modified Pt(111) Surfaces in Phosphate-Containing Solutions: Effect on the Hydrogen Evolution Reaction. <i>ChemPhysChem</i> , 2019 , 20, 3056-3066	3.2	5
74	Redox transformations of adsorbed NO molecules on a Pt(100) electrode. <i>Russian Journal of Electrochemistry</i> , 2014 , 50, 370-378	1.2	5
73	Oxidation of Ethanol and Its Derivatives on Well Defined Pt Single Crystal Electrodes Vicinal to Pt(111): A Comparative Study. <i>ECS Transactions</i> , 2013 , 53, 11-22	1	5
72	1 Temperature Effects on Platinum Single-Crystal/Aqueous Solution Interphases. Combining Gibbs Thermodynamics with Laser-Pulsed Experiments. <i>Modern Aspects of Electrochemistry</i> , 2011 , 1-105		5
71	Nitrate Reduction on Platinum (111) Surfaces Modifiedl with Bi: Single Crystalsl and Nanoparticles. <i>Zeitschrift Fur Physikalische Chemie</i> , 2012 , 226, 901-917	3.1	5

70	Oxidative adsorption and hydrogen-mediated desorption of parabanic acid on Pt(111) electrodes. Journal of Electroanalytical Chemistry, 2003 , 550-551, 53-65	4.1	5
69	Chirality at Well-Defined Metal Surfaces. ACS Symposium Series, 2002, 254-268	0.4	5
68	The influence of stepped Pt[n(111)[1110)] electrodes towards glycerol electrooxidation: Electrochemical and FTIR studies. <i>Electrochimica Acta</i> , 2020 , 346, 136187	6.7	5
67	Small (. <i>ChemElectroChem</i> , 2021 , 8, 49-52	4.3	5
66	Requirement of initial long-range substrate structure in unusual CO pre-oxidation on Pt(111) electrodes. <i>Electrochemistry Communications</i> , 2018 , 97, 60-63	5.1	5
65	Energy and economic advantages of simultaneous hydrogen and biogas production in microbial electrolysis cells as a function of the applied voltage and biomass content. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 2003-2017	5.8	5
64	Electrochemical Properties of Pd/Pt(111) Adlayers 2002 , 37-52		5
63	Trimesic acid on Cu in ethanol: Potential-dependent transition from 2-D adsorbate to 3-D metal-organic framework. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 793, 226-234	4.1	4
62	Effect of surface structure of platinum single crystal electrodes on the electrochemical reduction of CO2 in methanol-water mixtures. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 793, 157-163	4.1	4
61	Rational Design of Electrocatalytic Interfaces: Cd UPD Mediated Nitrate Reduction on Pd: Au Bimetallic Surfaces. <i>Journal of the Electrochemical Society</i> , 2019 , 166, H640-H643	3.9	4
60	Future tasks in interfacial electrochemistry and surface reactivity. <i>Journal of Solid State Electrochemistry</i> , 2020 , 24, 2073-2075	2.6	4
59	Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 875, 114015	4.1	4
58	Electrochemical Characterisation of Platinum Nanoparticles Prepared in a Water-in-Oil Microemulsion in the Presence of Different Modifiers and Metal Precursors. <i>ChemElectroChem</i> , 2016 , 3, 1601-1608	4.3	4
57	Nitrate anion reduction in aqueous perchloric acid as an electrochemical probe of Pt{1 1 0}-(1 🗓) terrace sites. <i>Journal of Catalysis</i> , 2019 , 378, 238-247	7.3	4
56	Formation of cyanuric acid from cyanate adsorbed at gold electrodes. <i>Electrochemistry Communications</i> , 2017 , 74, 1-4	5.1	4
55	NO adsorption on Pt (111)/Bi surfaces. <i>Electrochemistry Communications</i> , 2013 , 34, 37-40	5.1	4
54	Electrocatalytic Properties of Stepped Surfaces 2011 , 127-163		4
53	Imaging decorated platinum single crystal electrodes by scanning electrochemical microscopy. <i>Electrochimica Acta</i> , 2011 , 56, 10708-10712	6.7	4

52	Use of model Pt(111) single crystal electrodes under HMRDE configuration to study the redox mechanism for charge injection at aromatic/metal interfaces. <i>Langmuir</i> , 2010 , 26, 2124-9	4	4
51	Reactivity of Pt(h,k,l) surfaces. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1998 , 134, 133-143	5.1	4
50	In-situ FTIR Studies on the Acid B ase Equilibria of Adsorbed Species on Well-Defined Metal Electrode Surfaces 2007 , 1-32		4
49	Monitoring of CO Binding Sites on Stepped Pt Single Crystal Electrodes in Alkaline Solutions by in Situ FTIR Spectroscopy. <i>Langmuir</i> , 2020 , 36, 704-714	4	4
48	Activation Energy of Hydrogen Adsorption on Pt(111) in Alkaline Media: An Impedance Spectroscopy Study at Variable Temperatures. <i>ACS Applied Materials & Description</i> , 12, 42911-4	1 <mark>2:5</mark> 17	4
47	Catalysis of poly(3,4-ethylenedioxythiophene)-Pt(hkl) electrodes towards 2,5-dimercapto-1,3,4-thiadiazole in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. <i>Electrochimica Acta</i> , 2016 , 218, 54-57	6.7	4
46	On the behavior of CTAB/CTAOH adlayers on gold single crystal surfaces. <i>Electrochimica Acta</i> , 2021 , 391, 138947	6.7	4
45	Voltammetric and in situ infrared spectroscopy studies of hydroxyurea electrooxidation at Au(111) electrodes in HClO4 solutions. <i>Electrochemistry Communications</i> , 2017 , 76, 34-37	5.1	3
44	The Role of Adsorption in the Electrocatalysis of Hydrazine on Platinum Electrodes. <i>ChemElectroChem</i> , 2017 , 4, 1130-1134	4.3	3
43	Potential-induced acid-base chemistry of adsorbed species. <i>Electrochimica Acta</i> , 2019 , 324, 134793	6.7	3
42	Peroxodisulfate reduction on platinum stepped surfaces vicinal to the (110) and (100) poles. Journal of Electroanalytical Chemistry, 2019 , 847, 113226	4.1	3
41	Vibrational Properties of Pd Nanocubes. <i>Nanomaterials</i> , 2019 , 9,	5.4	3
40	Two-dimensional Cu deposition on Pt(100) and stepped surfaces of platinum single crystals. <i>Electrochimica Acta</i> , 2016 , 194, 385-393	6.7	3
39	Spectroelectrochemical and Density Functional Theory Study of Squaric Acid Adsorption and Oxidation at Gold Thin Film and Single Crystal Electrodes. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 22352-22365	3.8	3
38	Anion Adsorption and Charge Transfer on Single-Crystal Electrodes. ACS Symposium Series, 1997, 156-17	'0 .4	3
37	Dimethoxymethane electrooxidation on low index planes of platinum single crystal in acid media. <i>Electrochimica Acta</i> , 2008 , 54, 394-402	6.7	3
36	Etude de l'effet de prEraitements sur la topographie des surfaces orientEs de platine par deux mEhodes indBendantes : voltammErie et STM. <i>European Physical Journal Special Topics</i> , 1994 , 04, C1-303-	·C1-30	8 ³
35	FTIR study of surface structure influence on the electrochemical behaviour of the ascorbate anion at platinum electrodes in neutral solutions. <i>Journal of Electroanalytical Chemistry</i> , 1994 , 374, 263-268	4.1	3

34	Effet de la structure cristalline sur les propri E S d'adsorption des l ectrodes de platine. <i>European Physical Journal Special Topics</i> , 1994 , 04, C1-75-C1-93		3
33	The role of adsorbates in electrocatalytic systems: An analysis of model systems with single crystals. <i>Current Opinion in Electrochemistry</i> , 2021 , 26, 100666	7.2	3
32	Detection of Superoxide Anion Oxygen Reduction Reaction Intermediate on Pt(111) by Infrared Reflection Absorption Spectroscopy in Neutral pH Conditions. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1588-1592	6.4	3
31	Thermodynamic studies of anion adsorption at the Pt(111) electrode surface from glycolic acid solutions. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 13-21	2.6	2
30	Preface to the Kohei Uosaki Festschrift: Electrochemistry of Ordered Interfaces D esign, Construction, and Interrogation of Functional Electrochemical Interphases with Atomic/Molecular Resolution. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 15527-15529	3.8	2
29	Adsorption and first stages of polymerization of aniline on platinum single crystal electrodes. <i>Synthetic Metals</i> , 2014 , 196, 61-67	3.6	2
28	Towards More Active and Stable Electrocatalysts for Formic Acid Electrooxidation: Antimony-Decorated Octahedral Platinum Nanoparticles. <i>Angewandte Chemie</i> , 2013 , 125, 998-1001	3.6	2
27	Au Electrocatalysis for Oxygen Reduction. <i>Lecture Notes in Energy</i> , 2013 , 483-512	0.4	2
26	Surface excesses at very low concentrations from extrapolation of thermodynamic data: A way to explore beyond practical limits from reliable experimental data. <i>Journal of Electroanalytical Chemistry</i> , 2010 , 649, 119-125	4.1	2
25	Changes in Pt(111) Two-dimensional Long-range Order Induced by Slow Mercury Adsorption and Alloying. <i>Russian Journal of Electrochemistry</i> , 2002 , 38, 754-767	1.2	2
24	Surface Defects as Ingredients That Can Improve or Inhibit the Pathways for CO Oxidation at Low Overpotentials Using Pt(111)-Type Catalysts. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 26583-26595	3.8	2
23	New insights into the hydrogen peroxide reduction reaction and its comparison with the oxygen reduction reaction in alkaline media on well-defined platinum surfaces. <i>Journal of Catalysis</i> , 2021 , 398, 123-132	7.3	2
22	Cation Effects on Interfacial Water Structure and Hydrogen Peroxide Reduction on Pt(111). ACS Measurement Science Au,		2
21	Charge effects on the behavior of CTAB adsorbed on Au(111) electrodes in aqueous solutions. <i>Electrochimica Acta</i> , 2021 , 370, 137737	6.7	2
20	Formic acid electrooxidation on small, {1 0 0} structured, and Pd decorated carbon-supported Pt nanoparticles. <i>Journal of Catalysis</i> , 2021 , 400, 140-147	7.3	2
19	Oxygen reduction reaction on Pd nanoparticles supported on novel mesoporous carbon materials. <i>Electrochimica Acta</i> , 2021 , 394, 139132	6.7	2
18	Cu(111) single crystal electrodes: Modifying interfacial properties to tailor electrocatalysis. <i>Electrochimica Acta</i> , 2021 , 396, 139222	6.7	2
17	Investigating the presence of adsorbed species on Pt steps at low potentials <i>Nature Communications</i> , 2022 , 13, 2550	17.4	2

LIST OF PUBLICATIONS

16	Weakening the C C bond: On the behavior of glyoxylic acid on Pt(111) and its vicinal surfaces. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 779, 75-85	4.1	1
15	Formic acid oxidation 2010 ,		1
14	Approach to Microbial Fuel Cells and Their Applications 2010 , 257-281		1
13	Determination of the potential of zero charge of Pt/CO electrodes using an impinging jet system. <i>Journal of Solid State Electrochemistry</i> , 2020 , 24, 2871-2881	2.6	1
12	Glutamate adsorption on the Au(111) surface at different pH values. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 880, 114870	4.1	1
11	Surface charge and interfacial acid-base properties: pKa,2 of carbon dioxide at Pt(110)/perchloric acid solution interfaces <i>Electrochimica Acta</i> , 2021 , 388, 138639	6.7	1
10	Structure effects on electrocatalysts. Oxygen reduction on Te-modified Pt(111) surfaces: Site-blocking vs electronic effects. <i>Journal of Chemical Physics</i> , 2020 , 152, 134702	3.9	О
9	Size-dependent and step-modulated supramolecular electrochemical properties of catechol-derived adlayers at Pt(hkl) surfaces. <i>Langmuir</i> , 2013 , 29, 13102-10	4	O
8	Oxygen electroreduction on small (. <i>Electrochimica Acta</i> , 2022 , 403, 139631	6.7	О
7	SO2 Electrooxidation Reaction on Pt Single Crystal Surfaces in Acidic Media: Electrochemical and in situ FTIR Studies. <i>Electrochimica Acta</i> , 2021 , 403, 139601	6.7	O
6	Kinetics at Single Crystal Electrodes 2017 , 113-146		
5	DFT and In Situ Infrared Studies on Adsorption and Oxidation of Glycine, L-Alanine, and L-Serine on Gold Electrodes 2013 , 239-265		
4	Electrodimerization of quinoline derivatives. 5-Chloro- and 5, 7-dichloro-8-hydroxyquinoline. <i>Electrochimica Acta</i> , 1987 , 32, 1431-1433	6.7	
3	Electrochemical Control of the Core-Shell Cobalt-Platinum Nanoparticles 2015 , 1-11		
2	Electrochemical Control of the Core-Shell Cobalt-Platinum Nanoparticles 2016 , 769-782		
1	On the thermodynamics of hydrogen adsorption over Pt(111) in 0.05M NaOH <i>Journal of Chemical Physics</i> , 2021 , 155, 244704	3.9	