Juan M Feliu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455938/publications.pdf

Version: 2024-02-01

534 27,818 85 papers citations h-index

553 553 553 12932 all docs docs citations times ranked citing authors

131

g-index

#	Article	IF	CITATIONS
1	Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy, $2017, 2, .$	19.8	791
2	In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nature Energy, 2019, 4, 60-67.	19.8	478
3	Role of Crystalline Defects in Electrocatalysis:  Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes. Journal of Physical Chemistry B, 2002, 106, 12938-12947.	1.2	371
4	Defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical Report). Pure and Applied Chemistry, 2014, 86, 245-258.	0.9	361
5	Surface characterization of platinum electrodes. Physical Chemistry Chemical Physics, 2008, 10, 1359-1373.	1.3	351
6	Oxygen reduction on stepped platinum surfaces in acidic media. Journal of Electroanalytical Chemistry, 2007, 599, 333-343.	1.9	330
7	On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. Journal of Electroanalytical Chemistry, 2004, 564, 141-150.	1.9	325
8	Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Physical Chemistry Chemical Physics, 2008, 10, 3689.	1.3	265
9	An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 243, 419-433.	0.3	260
10	Cooxidation on stepped $Pt[n(111)\tilde{A}-(111)]$ electrodes. Journal of Electroanalytical Chemistry, 2000, 487, 37-44.	1.9	258
11	Surface Reactivity at "Chiral―Platinum Surfaces. Langmuir, 1999, 15, 2420-2424.	1.6	246
12	Electrochemical Characterization of Shape-Controlled Pt Nanoparticles in Different Supporting Electrolytes. ACS Catalysis, 2012, 2, 901-910.	5.5	238
13	Study of the charge displacement at constant potential during CO adsorption on $Pt(110)$ and $Pt(111)$ electrodes in contact with a perchloric acid solution. Journal of Electroanalytical Chemistry, 1992, 330, 489-497.	1.9	225
14	Role of Crystalline Defects in Electrocatalysis:Â CO Adsorption and Oxidation on Stepped Platinum Electrodes As Studied by in situ Infrared Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 9863-9872.	1.2	221
15	Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochemistry Communications, 2004, 6, 1080-1084.	2.3	218
16	Câ€Type Cytochromes Wire Electricityâ€Producing Bacteria to Electrodes. Angewandte Chemie - International Edition, 2008, 47, 4874-4877.	7.2	209
17	Thirty years of platinum single crystal electrochemistry. Journal of Solid State Electrochemistry, 2011, 15, 1297-1315.	1.2	204
18	Water dissociation on well-defined platinum surfaces: The electrochemical perspective. Catalysis Today, 2013, 202, 105-113.	2.2	201

#	Article	IF	Citations
19	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
20	New information on the unusual adsorption states of $Pt(111)$ in sulphuric acid solutions from potentiostatic adsorbate replacement by CO. Journal of Electroanalytical Chemistry, 1994, 372, 265-268.	1.9	186
21	Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111). Journal of Electroanalytical Chemistry, 2002, 524-525, 242-251.	1.9	176
22	Effect of Adatoms in the Electrocatalysis of HCOOH Oxidation. A Theoretical Model. Langmuir, 1997, 13, 6287-6293.	1.6	172
23	The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: The role of anion adsorption in fundamental electrocatalysis. Electrochimica Acta, 2010, 55, 7982-7994.	2.6	171
24	Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discussions, 2008, 140, 379-397.	1.6	167
25	Oxygen reduction reaction at Pt single crystals: a critical overview. Catalysis Science and Technology, 2014, 4, 1685.	2.1	167
26	Pt-Rich _{core} /Sn-Rich _{subsurface} /Pt _{skin} Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 2018, 140, 3791-3797.	6.6	166
27	Validity of double-layer charge-corrected voltammetry for assaying carbon monoxide coverages on ordered transition metals: comparisons with adlayer structures in electrochemical and ultrahigh vacuum environments. Surface Science, 1998, 410, 48-61.	0.8	160
28	CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochemistry Communications, 2006, 8, 189-194.	2.3	160
29	Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt–Ni–Co Alloy Nanocatalysts. Nano Letters, 2015, 15, 7473-7480.	4.5	156
30	Whole Cell Electrochemistry of Electricity-Producing Microorganisms Evidence an Adaptation for Optimal Exocellular Electron Transport. Environmental Science & Environmental Science & 2008, 42, 2445-2450.	4.6	155
31	The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosensors and Bioelectronics, 2010, 25, 2167-2171.	5.3	154
32	Direct <i>In Situ</i> Raman Spectroscopic Evidence of Oxygen Reduction Reaction Intermediates at High-Index Pt(<i>hkl</i>) Surfaces. Journal of the American Chemical Society, 2020, 142, 715-719.	6.6	154
33	Effect of Temperature on Hydrogen Adsorption on $Pt(111)$, $Pt(110)$, and $Pt(100)$ Electrodes in 0.1 M HClO4. Journal of Physical Chemistry B, 2004, 108, 228-238.	1.2	153
34	Hydrogen evolution on platinum single crystal surfaces: effects of irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on platinum (100). The Journal of Physical Chemistry, 1993, 97, 4769-4776.	2.9	152
35	Poison formation reaction from formic acid and methanol on $Pt(111)$ electrodes modified by irreversibly adsorbed Bi and As. Journal of Electroanalytical Chemistry, 1993, 350, 73-88.	1.9	150
36	Selective electrocatalysis of ammonia oxidation on Pt(100) sites in alkaline medium. Electrochemistry Communications, 2003, 5, 22-26.	2.3	148

#	Article	IF	Citations
37	Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 258, 89-100.	0.3	145
38	Electrochemistry of Shape-Controlled Catalysts:  Oxygen Reduction Reaction on Cubic Gold Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 14078-14083.	1.5	145
39	Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd,) Tj ETQq1	1	4 rgBT /Ove
40	Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochimica Acta, 2012, 59, 329-335.	2.6	141
41	Shape dependent electrocatalysis. Annual Reports on the Progress of Chemistry Section C, 2011, 107, 263.	4.4	138
42	Potentiostatic charge displacement by exchanging adsorbed species on Pt(111) electrodesâ€"acidic electrolytes with specific anion adsorption. Electrochimica Acta, 1994, 39, 1519-1524.	2.6	136
43	New understanding of the nature of OH adsorption on Pt(111) electrodes. Electrochemistry Communications, 2007, 9, 2789-2794.	2.3	136
44	Dependence of the Potential of Zero Charge of Stepped Platinum (111) Electrodes on the Oriented Step-Edge Density:Â Electrochemical Implications and Comparison with Work Function Behavior. Journal of Physical Chemistry B, 2000, 104, 597-605.	1.2	133
45	Significantly Enhancing Catalytic Activity of Tetrahexahedral Pt Nanocrystals by Bi Adatom Decoration. Journal of the American Chemical Society, 2011, 133, 12930-12933.	6.6	132
46	Towards the understanding of the interfacial pH scale at Pt(1 11) electrodes. Electrochimica Acta, 2015, 162, 138-145.	2.6	131
47	Thermodynamic Analysis of the Temperature Dependence of OH Adsorption on Pt(111) and Pt(100) Electrodes in Acidic Media in the Absence of Specific Anion Adsorption. Journal of Physical Chemistry B, 2006, 110, 11344-11351.	1.2	130
48	Formic acid oxidation on Pdad + $Pt(100)$ and Pdad + $Pt(111)$ electrodes. Journal of Electroanalytical Chemistry, 1994, 376, 151-160.	1.9	128
49	Methanol oxidation on gold nanoparticles in alkaline media: Unusual electrocatalytic activity. Electrochimica Acta, 2006, 52, 1662-1669.	2.6	128
50	Temperature Effects in the Enantiomeric Electro-Oxidation of d- and l-Glucose on Pt{643}S. Journal of Physical Chemistry B, 1999, 103, 1381-1385.	1.2	127
51	Potential-Dependent Water Orientation on Pt(111), Pt(100), and Pt(110), As Inferred from Laser-Pulsed Experiments. Electrostatic and Chemical Effects. Journal of Physical Chemistry C, 2009, 113, 9290-9304.	1.5	126
52	Definition of the transfer coefficient in electrochemistry (IUPAC Recommendations 2014). Pure and Applied Chemistry, 2014, 86, 259-262.	0.9	124
53	Synthesis of Pt Nanoparticles in Water-in-Oil Microemulsion: Effect of HCl on Their Surface Structure. Journal of the American Chemical Society, 2014, 136, 1280-1283.	6.6	124
54	Ammonia Selective Oxidation on Pt(100) Sites in an Alkaline Medium. Journal of Physical Chemistry B, 2005, 109, 12914-12919.	1.2	118

#	Article	IF	CITATIONS
55	CO electrooxidation on carbon supported platinum nanoparticles: Effect of aggregation. Journal of Electroanalytical Chemistry, 2010, 644, 117-126.	1.9	117
56	Selective Catalytic Reduction at Quasi-Perfect Pt(100) Domains: A Universal Low-Temperature Pathway from Nitrite to N ₂ . Journal of the American Chemical Society, 2011, 133, 10928-10939.	6.6	117
57	In Situ Surface Characterization of Preferentially Oriented Platinum Nanoparticles by Using Electrochemical Structure Sensitive Adsorption Reactions. Journal of Physical Chemistry B, 2004, 108, 13573-13575.	1.2	116
58	Electrochemical studies in sulphuric acid solutions of adsorbed CO on Pt (111) electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 296, 191-201.	0.3	113
59	Displacement of adsorbed iodine on platinum single-crystal electrodes by irreversible adsorption of CO at controlled potential. Journal of Electroanalytical Chemistry, 1993, 360, 325-335.	1.9	113
60	Sensitivity of Compressed Carbon Monoxide Adlayers on Platinum(111) Electrodes to Long-Range Substrate Structure:Â Influence of Monoatomic Steps. Langmuir, 2000, 16, 811-816.	1.6	112
61	The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Physical Chemistry Chemical Physics, 2009, 11, 9114.	1.3	112
62	Effect of increasing amount of steps on the potential of zero total charge of Pt(111) electrodes. Electrochimica Acta, 1999, 45, 629-637.	2.6	111
63	Poison formation reaction from formic acid on Pt(100) electrodes modified by irreversibly adsorbed bismuth and antimony. Journal of Electroanalytical Chemistry, 1994, 368, 101-108.	1.9	110
64	Role of surface defect sites: from Pt model surfaces to shape-controlled nanoparticles. Chemical Science, 2012, 3, 136-147.	3.7	109
65	Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochemistry Communications, 2011, 13, 734-737.	2.3	108
66	Oxidation of CO adlayers on $Pt(111)$ at low potentials: an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients. Journal of Electroanalytical Chemistry, 1999, 467, 74-84.	1.9	102
67	Formic Acid Oxidation on Shape-Controlled Pt Nanoparticles Studied by Pulsed Voltammetry. Journal of Physical Chemistry C, 2010, 114, 13802-13812.	1.5	101
68	DEMS study of ammonia oxidation on platinum basal planes. Journal of Electroanalytical Chemistry, 2006, 588, 331-338.	1.9	99
69	Electrochemical structure-sensitive behaviour of irreversibly adsorbed palladium on $Pt(100)$, $Pt(111)$ and $Pt(110)$ in an acidic medium. Journal of Electroanalytical Chemistry, 1993, 351, 299-319.	1.9	98
70	Scanning Tunneling Microscopy Images of Ruthenium Submonolayers Spontaneously Deposited on a Pt(111) Electrode. Langmuir, 1999, 15, 4944-4948.	1.6	98
71	Thermodynamic studies of anion adsorption at the $Pt(111)$ electrode surface in sulfuric acid solutions. Journal of Electroanalytical Chemistry, 2002, 534, 79-89.	1.9	98
72	Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces. Physical Chemistry Chemical Physics, 2010, 12, 8822.	1.3	98

#	Article	IF	Citations
73	Effect of pH and Water Structure on the Oxygen Reduction Reaction on platinum electrodes. Electrochimica Acta, 2017, 241, 497-509.	2.6	98
74	Electrochemical behaviour of CO layers formed by solution dosing at open circuit on $Pt(111)$. Voltammetric determination of CO coverages at full hydrogen adsorption blocking in various acid media. Journal of Electroanalytical Chemistry, 1992, 327, 261-278.	1.9	96
75	Potential of zero total charge of platinum single crystals: A local approach to stepped surfaces vicinal to Pt(111). Russian Journal of Electrochemistry, 2006, 42, 1145-1160.	0.3	96
76	Intrinsic Activity and Poisoning Rate for HCOOH Oxidation at Pt(100) and Vicinal Surfaces Containing Monoatomic (111) Steps. ChemPhysChem, 2009, 10, 1922-1926.	1.0	95
77	New observations of a structure sensitive electrochemical behaviour of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt (111) and Pt (100) orientations. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 256, 149-163.	0.3	94
78	Thermodynamic studies of chloride adsorption at the Pt(111) electrode surface from 0.1 M HClO4 solution. Journal of Electroanalytical Chemistry, 2005, 576, 33-41.	1.9	94
79	Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 613-623.	4.0	94
80	Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 258, 101-113.	0.3	93
81	Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: electrochemical and spectroscopic studies. Physical Chemistry Chemical Physics, 2008, 10, 3766.	1.3	92
82	Determination of the potentials of zero total charge of Pt(100) stepped surfaces in the [] zone. Effect of the step density and anion adsorption. Journal of Electroanalytical Chemistry, 2003, 552, 115-128.	1.9	91
83	Scanning tunneling microscopy and electrochemical study of the surface structure of Pt(10,10,9) and Pt(11,10,10) electrodes prepared under different cooling conditions. Surface Science, 1999, 440, 259-270.	0.8	90
84	Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 10258.	1.3	90
85	Oxidation Mechanism of Formic Acid on the Bismuth Adatom-Modified Pt(111) Surface. Journal of the American Chemical Society, 2014, 136, 13110-13113.	6.6	88
86	On the voltammetric and spectroscopic characterization of nitric oxide adlayers formed from nitrous acid on Pt(h,k,l) and Rh(h,k,l) electrodes. Electrochimica Acta, 1996, 41, 729-745.	2.6	87
87	Sequential Pt(111) oxide formation in perchloric acid: An electrochemical study of surface species inter-conversion. Journal of Electroanalytical Chemistry, 2013, 688, 360-370.	1.9	87
88	Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 261, 113-125.	0.3	86
89	Pd Adatom Decorated (100) Preferentially Oriented Pt Nanoparticles for Formic Acid Electrooxidation. Angewandte Chemie - International Edition, 2010, 49, 6998-7001.	7.2	86
90	Pt(111) surface disorder kinetics in perchloric acid solutions and the influence of specific anion adsorption. Electrochimica Acta, 2012, 82, 558-569.	2.6	86

#	Article	IF	Citations
91	Electrochemical behaviour of irreversibly adsorbed bismuth on Pt (100) with different degrees of crystalline surface order. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 269, 175-189.	0.3	85
92	Potential of zero charge of platinum stepped surfaces: a combined approach of CO charge displacement and N2O reduction. Journal of Electroanalytical Chemistry, 2002, 532, 67-74.	1.9	85
93	Characterization of the Surface Structure of Gold Nanoparticles and Nanorods Using Structure Sensitive Reactions. Journal of Physical Chemistry B, 2005, 109, 12651-12654.	1.2	85
94	Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering. Journal of the American Chemical Society, 2015, 137, 14992-14998.	6.6	85
95	Electrochemical reduction of nitrate on $Pt(S)[n(111)\tilde{A}-(111)]$ electrodes in perchloric acid solution. Electrochimica Acta, 2007, 52, 6023-6033.	2.6	84
96	The unusual adsorption states of $Pt(111)$ electrodes studied by an iodine displacement method: comparison with $Au(111)$ electrodes. Surface Science, 1995, 325, 131-138.	0.8	83
97	Specific surface reactions for identification of platinum surface domains. Electrochimica Acta, 2005, 50, 4308-4317.	2.6	83
98	An Aza-Fused π-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catalysis, 2017, 7, 1015-1024.	5.5	83
99	On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface. Electrochemistry Communications, 2000, 2, 636-640.	2.3	82
100	Ethanol Oxidation on Pt Singleâ€Crystal Electrodes: Surfaceâ€Structure Effects in Alkaline Medium. ChemPhysChem, 2014, 15, 2019-2028.	1.0	82
101	Temperature Dependence of CO Chemisorption and Its Oxidative Desorption on the Pt(111) Electrode. Langmuir, 2000, 16, 4779-4783.	1.6	81
102	Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes. ACS Catalysis, 2015, 5, 645-654.	5.5	81
103	Evidence of Water Reorientation on Model Electrocatalytic Surfaces from Nanosecond-Laser-Pulsed Experiments. Journal of the American Chemical Society, 2008, 130, 3824-3833.	6.6	80
104	Oxygen reduction reaction on stepped platinum surfaces in alkaline media. Physical Chemistry Chemical Physics, 2013, 15, 15416.	1.3	80
105	The effect of the cooling atmosphere in the preparation of flame-annealed Pt(111) electrodes on CO adlayer oxidation. Electrochemistry Communications, 2000, 2, 487-490.	2.3	79
106	Formic acid oxidation on Bi Pt(1 1 1) electrode in perchloric acid media. A kinetic study. Journal of Electroanalytical Chemistry, 2003, 554-555, 25-34.	1.9	79
107	Anion adsorption on Pd–Pt(111) electrodes in sulphuric acid solution. Journal of Electroanalytical Chemistry, 2001, 497, 125-138.	1.9	78
108	Thermodynamic approach to the double layer capacity of a $Pt(111)$ electrode in perchloric acid solutions. Electrochimica Acta, 2006, 51, 3787-3793.	2.6	78

#	Article	IF	Citations
109	Formic Acid Electrooxidation on Nobleâ€Metal Electrodes: Role and Mechanistic Implications of pH, Surface Structure, and Anion Adsorption. ChemElectroChem, 2014, 1, 1075-1083.	1.7	77
110	Formic acid oxidation on platinum electrodes: a detailed mechanism supported by experiments and calculations on well-defined surfaces. Journal of Materials Chemistry A, 2017, 5, 21773-21784.	5.2	77
111	Breaking the CïŁ¿C Bond in the Ethanol Oxidation Reaction on Platinum Electrodes: Effect of Steps and Ruthenium Adatoms. ChemPhysChem, 2010, 11, 1391-1394.	1.0	76
112	Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution. Carbon, 2011, 49, 4031-4039.	5.4	76
113	Temperature dependence of the COads oxidation process on Pt(111), Pt(100), and Pt(110) electrodes. Journal of Electroanalytical Chemistry, 2004, 567, 139-149.	1.9	7 5
114	Kinetic study of nitrate reduction on $Pt(1\ 1\ 0)$ electrode in perchloric acid solution. Electrochimica Acta, 2008, 53, 3626-3634.	2.6	75
115	Electrochemical and spectroscopic studies of ethanol oxidation on Pt stepped surfaces modified by tin adatoms. Physical Chemistry Chemical Physics, 2011, 13, 12163.	1.3	7 5
116	Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions. Electrochimica Acta, 2010, 55, 794-803.	2.6	74
117	Adsorption of Formate and Its Role as Intermediate in Formic Acid Oxidation on Platinum Electrodes. ChemPhysChem, 2011, 12, 1641-1644.	1.0	74
118	Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: Evidences of atomic surface disordering. Electrochemistry Communications, 2011, 13, 502-505.	2.3	74
119	Preliminary study of the electrochemical adsorption behaviour of a palladium modified Pt(111) electrode in the whole range of coverage. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 310, 429-435.	0.3	73
120	Electrocatalysis of formic acid and CO oxidation on antimony-modified Pt(111) electrodes. Electrochimica Acta, 1998, 44, 1403-1414.	2.6	73
121	Formic acid self-poisoning on bismuth-modified stepped electrodes. Journal of Electroanalytical Chemistry, 2001, 500, 498-509.	1.9	70
122	Thermodynamic Studies of Anion Adsorption at Stepped Platinum(hkl) Electrode Surfaces in Sulfuric Acid Solutions. Journal of Physical Chemistry B, 2002, 106, 12787-12796.	1.2	70
123	Effects of the anion adsorption and pH on the formic acid oxidation reaction on $Pt(111)$ electrodes. Electrochimica Acta, 2014, 140, 511-517.	2.6	70
124	Further Insights into the Formic Acid Oxidation Mechanism on Platinum: pH and Anion Adsorption Effects. Electrochimica Acta, 2015, 180, 479-485.	2.6	70
125	Anion effects and the mechanism of Cu UPD on Pt(111): X-ray and electrochemical studies. Surface Science, 1995, 335, 101-109.	0.8	69
126	Competitive adsorption of hydrogen and bromide on Pt(100): Mean-field approximation vs. Monte Carlo simulations. Journal of Electroanalytical Chemistry, 2006, 588, 1-14.	1.9	68

#	Article	IF	Citations
127	Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions. Electrochimica Acta, 2011, 56, 6702-6708.	2.6	68
128	Electrochemical oxidation of ethylene glycol on Pt single crystal electrodes with basal orientations in acidic medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 290, 119-133.	0.3	67
129	Comparison of electrosorption at activated polycrystalline and Pt(531) kinked platinum electrodes: surface voltammetry and charge displacement on potentiostatic CO adsorption. Journal of Electroanalytical Chemistry, 1996, 404, 281-289.	1.9	67
130	Determination of (111) Ordered Domains on Platinum Electrodes by Irreversible Adsorption of Bismuth. Analytical Chemistry, 2005, 77, 5317-5323.	3.2	66
131	<l>ln Situ</l> Surface Characterization and Oxygen Reduction Reaction on Shape-Controlled Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 2256-2273.	0.9	65
132	Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles. Physical Chemistry Chemical Physics, 2009, 11, 416-424.	1.3	65
133	Analysis of temperature effects on hydrogen and OH adsorption on Pt(1 1 1), Pt(1 0 0) and Pt(1 1 0) by means of Gibbs thermodynamics. Journal of Electroanalytical Chemistry, 2010, 649, 69-82.	1.9	65
134	Some reflections on the understanding of the oxygen reduction reaction at Pt(111). Beilstein Journal of Nanotechnology, 2013, 4, 956-967.	1.5	65
135	New Insights into the Oxygen Reduction Reaction Mechanism on Pt (111): A Detailed Electrochemical Study. ChemSusChem, 2013, 6, 1091-1100.	3.6	64
136	Formic acid oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium. Journal of Electroanalytical Chemistry, 1994, 373, 217-225.	1.9	63
137	Role of the Metal and Surface Structure in the Electro-oxidation of Hydrazine in Acidic Media. Journal of the Electrochemical Society, 2002, 149, D35.	1.3	63
138	Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 305, 229-240.	0.3	62
139	Thermodynamic analysis of (bi)sulphate adsorption on a $Pt(111)$ electrode as a function of pH. Electrochimica Acta, 2008, 53, 6793-6806.	2.6	62
140	CO monolayer oxidation on stepped Pt(S) [($n\hat{a}^{1}$)(100) \tilde{A} —(110)] surfaces. Electrochimica Acta, 2009, 54, 4459-4466.	2.6	62
141	In Situ FTIR Spectroscopy Characterization of the NO Adlayers Formed at Platinum Single Crystal Electrodes in Contact with Acidic Solutions of Nitrite. Langmuir, 1995, 11, 3549-3553.	1.6	61
142	ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens. Bioelectrochemistry, 2010, 78, 25-29.	2.4	61
143	Electrochemical surface reordering of $Pt(111)$: A quantification of the place-exchange process. Journal of Electroanalytical Chemistry, 2011 , 662 , 17 - 24 .	1.9	61
144	Determination of the Gibbs excess of H and OH adsorbed at a Pt(111) electrode surface using a thermodynamic method. Journal of Electroanalytical Chemistry, 2003, 558, 19-24.	1.9	60

#	Article	IF	Citations
145	Electrochemical reactions of catechol, methylcatechol and dopamine at tetrahedral amorphous carbon (ta-C) thin film electrodes. Diamond and Related Materials, 2015, 59, 30-39.	1.8	59
146	Study of the conditions for irreversible adsorption of lead at Pt(h,k,l) electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 293, 197-208.	0.3	58
147	On the electrochemical behavior of the Pt(100) vicinal surfaces in bromide solutions. Surface Science, 2004, 560, 269-284.	0.8	58
148	Effect of pH and Alkaline Metal Cations on the Voltammetry of Pt(111) Single Crystal Electrodes in Sulfuric Acid Solution. ChemPhysChem, 2004, 5, 1221-1227.	1.0	58
149	On the global and local values of the potential of zero total charge at well-defined platinum surfaces: stepped and adatom modified surfaces. Journal of Electroanalytical Chemistry, 2004, 568, 329-342.	1.9	58
150	Understanding formic acid oxidation mechanism on platinum single crystal electrodes. Current Opinion in Electrochemistry, 2018, 9, 145-150.	2.5	58
151	Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(100). Electrochimica Acta, 2005, 50, 3111-3121.	2.6	57
152	Elucidation of the Chemical Nature of Adsorbed Species for Pt(111) in H ₂ SO ₄ Solutions by Thermodynamic Analysis. Langmuir, 2010, 26, 12408-12417.	1.6	57
153	Site Selectivity for CO Adsorption and Stripping on Stepped and Kinked Platinum Surfaces in Alkaline Medium. Journal of Physical Chemistry C, 2013, 117, 2903-2913.	1.5	57
154	The role of anions in oxygen reduction in neutral and basic media on gold single-crystal electrodes. Journal of Solid State Electrochemistry, 2003, 7, 599-606.	1.2	56
155	Electroreduction of nitrate ions on $Pt(1\ 1\ 1)$ electrodes modified by copper adatoms. Electrochimica Acta, 2010, 56, 154-165.	2.6	56
156	In-Situ Infrared Study of the Adsorption and Oxidation of Oxalic Acid at Single-Crystal and Thin-Film Gold Electrodes:Â A Combined External Reflection Infrared and ATRâ^'SEIRAS Approach. Langmuir, 2006, 22, 7192-7202.	1.6	55
157	On the behavior of the Pt(100) and vicinal surfaces in alkaline media. Electrochimica Acta, 2011, 58, 184-192.	2.6	55
158	Electrochemical and in situ FTIR studies of the CO adsorption at palladium and rhodium multilayers deposited on platinum single crystal surfaces. I. Pt(110) substrate. Surface Science, 1995, 327, 202-215.	0.8	54
159	Kinetics of copper deposition on $Pt(111)$ and $Au(111)$ electrodes in solutions of different acidities. Electrochimica Acta, 2005, 50, 5032-5043.	2.6	54
160	The role of the surface structure in the oxidation mechanism of methanol. Journal of Electroanalytical Chemistry, 2011, 662, 43-51.	1.9	54
161	Understanding the CO Preoxidation and the Intrinsic Catalytic Activity of Step Sites in Stepped Pt Surfaces in Acidic Medium. Journal of Physical Chemistry C, 2015, 119, 20272-20282.	1.5	54
162	Oxalic acid adsorption and oxidation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 2004, 563, 49-62.	1.9	53

#	Article	IF	CITATIONS
163	Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochimica Acta, 2008, 53, 2309-2321.	2.6	53
164	Thermodynamic studies of bromide adsorption at the $Pt(111)$ electrode surface perchloric acid solutions: Comparison with other anions. Journal of Electroanalytical Chemistry, 2006, 591, 149-158.	1.9	52
165	Potential-dependent water orientation on Pt(111) stepped surfaces from laser-pulsed experiments. Electrochimica Acta, 2009, 54, 966-977.	2.6	52
166	Surface structure and anion effects in the oxidation of ethanol on platinum nanoparticles. Journal of Materials Chemistry A, 2013, 1, 7068.	5.2	52
167	Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acidÂoxidation. Journal of Power Sources, 2013, 225, 323-329.	4.0	52
168	Towards More Active and Stable Electrocatalysts for Formic Acid Electrooxidation: Antimonyâ€Decorated Octahedral Platinum Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 964-967.	7.2	52
169	The role of surface crystalline heterogeneities in the electrooxidation of carbon monoxide adsorbed on Rh(111) electrodes in sulphuric acid solutions. Journal of Electroanalytical Chemistry, 1997, 432, 1-5.	1.9	51
170	CO oxidation on stepped Rh[n (111) Ã $-(111)$] single crystal electrodes: a voltammetric study. Journal of Electroanalytical Chemistry, 2004, 572, 79-91.	1.9	51
171	Kinetics of surface modification induced by submonolayer electrochemical oxygen adsorption on Pt(1) Tj ETQq1	1 <u>0.7</u> 8431	4 ggBT /Ove
172	Effect of Temperature on the Catalytic Ability of Electrochemically Active Biofilm as Anode Catalyst in Microbial Fuel Cells. Electroanalysis, 2011, 23, 387-394.	1.5	51
173	Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3769.	1.7	50
174	The influence of anions and kink structure on the enantioselective electro-oxidation of glucose. Faraday Discussions, 2002, 121, 253-266.	1.6	50
175	Nitrate reduction on $Pt(111)$ surfaces modified by Bi adatoms. Electrochemistry Communications, 2009, 11, 1760-1763.	2.3	50
176	Scanning electrochemical microscopy for studying electrocatalysis on shape-controlled gold nanoparticles and nanorods. Electrochimica Acta, 2010, 55, 8252-8257.	2.6	50
177	Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media. Journal of Electroanalytical Chemistry, 2013, 707, 89-94.	1.9	50
178	Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. Catalysis Today, 2013, 202, 2-11.	2,2	50
179	Electrochemical behavior of irreversibly adsorbed selenium dosed from solution on Pt(h,k,l) single crystal electrodes in sulphuric and perchloric acid media. Surface Science, 1993, 289, 152-162.	0.8	49
180	Electrochemical and in situ FTIRS studies of the CO adsorption at palladium and rhodium multilayers deposited on platinum single crystal surfaces II. Pt(100) substrate. Surface Science, 1995, 344, 85-97.	0.8	49

#	Article	IF	CITATIONS
181	Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochemistry Communications, 2009, 11, 1105-1108.	2.3	49
182	Spectroelectrochemical Studies of the $Pt(111)/Nafion$ Interface Cast Electrode. Journal of Physical Chemistry C, 2010, 114, 20130-20140.	1.5	49
183	Oxygen reduction on nanostructured platinum surfaces in acidic media: Promoting effect of surface steps and ideal response of $Pt(1\ 1\ 1)$. Catalysis Today, 2015, 244, 172-176.	2.2	49
184	Study of the Pt (111) electrolyte interface in the region close to neutral pH solutions by the laser induced temperature jump technique. Electrochimica Acta, 2017, 228, 667-676.	2.6	49
185	Reaction Mechanism for Oxygen Reduction on Platinum: Existence of a Fast Initial Chemical Step and a Soluble Species Different from H ₂ O ₂ . ACS Catalysis, 2018, 8, 7931-7943.	5.5	49
186	STM identification of silver oligomer clusters prepared by radiolysis in aqueous solution. Chemical Physics Letters, 1994, 218, 115-121.	1.2	48
187	FTIRS and electrochemical characterization of NO adlayers on Pt(hkl) generated upon immersion in an acidic solution of nitrite. Surface Science, 1995, 342, L1104-L1110.	0.8	48
188	Exploring the interfacial neutral pH region of $Pt(111)$ electrodes. Electrochemistry Communications, 2015, 58, 62-64.	2.3	48
189	The behaviour of germanium adatoms irreversibly adsorbed on platinum single crystals. Journal of Electroanalytical Chemistry, 1992, 340, 349-355.	1.9	47
190	Induced adsorption of sulfate/bisulfate anions by submonolayer amounts of copper on deliberately stepped Pt surfaces. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3757-3762.	1.7	47
191	Potential of zero total charge of palladium modified $Pt(111)$ electrodes in perchloric acid solutions. Physical Chemistry Chemical Physics, 2001, 3, 3269-3276.	1.3	47
192	Sulphate adsorption at chemically deposited silver thin film electrodes: time-dependent behaviour as studied by internal reflection step-scan infrared spectroscopy. Electrochemistry Communications, 2003, 5, 56-60.	2.3	47
193	Thermodynamic studies of phosphate adsorption on $Pt(111)$ electrode surfaces in perchloric acid solutions. Electrochimica Acta, 2009, 54, 5836-5843.	2.6	47
194	Electrochemical Characterization of Clean Shapeâ€Controlled Pt Nanoparticles Prepared in Presence of Oleylamine/Oleic Acid. Electroanalysis, 2015, 27, 945-956.	1.5	47
195	Cleavage of the C–C Bond in the Ethanol Oxidation Reaction on Platinum. Insight from Experiments and Calculations. Journal of Physical Chemistry C, 2016, 120, 11590-11597.	1.5	47
196	Electrochemical behaviour of the Pt (111)-As system in acidic medium: adsorbed hydrogen and hydrogen reaction. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 294, 193-208.	0.3	46
197	Rhodium adlayers on $Pt(111)$ monocrystalline surfaces. Electrochemical behavior and electrocatalysis. Electrochimica Acta, 1998, 44, 1191-1205.	2.6	46
198	Formic acid self-poisoning on adatom-modified stepped electrodes. Electrochimica Acta, 2002, 47, 3653-3661.	2.6	46

#	Article	IF	CITATIONS
199	Quantitative SNIFTIRS studies of (bi)sulfate adsorption at the Pt(111) electrode surface. Physical Chemistry Chemical Physics, 2010, 12, 15231.	1.3	46
200	Electrochemical Oxidation of $Pt(1\ 1\ 1)$ Vicinal Surfaces: Effects of Surface Structure and Specific Anion Adsorption. Journal of Physical Chemistry C, 2011, 115, 15509-15515.	1.5	46
201	Oxide growth dynamics at Pt(111) in absence of specific adsorption: A mechanistic study. Electrochimica Acta, 2013, 104, 367-377.	2.6	46
202	Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study. Journal of Electroanalytical Chemistry, 2016, 763, 116-124.	1.9	46
203	CO adsorption and oxidation on $Pt(111)$ electrodes modified by irreversibly adsorbed arsenic in sulphuric acid medium. Comparison with bismuth-modified electrodes. Journal of Electroanalytical Chemistry, 1995, 393, 87-96.	1.9	45
204	Effect of Deposited Bismuth on the Potential of Maximum Entropy of Pt(111) Single-Crystal Electrodes. Journal of Physical Chemistry B, 2006, 110, 21092-21100.	1.2	45
205	Specific reactivity of step sites towards CO adsorption and oxidation on platinum single crystals vicinal to Pt(111). Physical Chemistry Chemical Physics, 2010, 12, 11407.	1.3	45
206	New electrochemically improved tetrahedral amorphous carbon films for biological applications. Diamond and Related Materials, 2014, 49, 62-71.	1.8	45
207	Influence of the geometry of the hanging meniscus contact on the hydrogen oxidation reaction on a Pt(111) electrode in sulphuric acid. Journal of Electroanalytical Chemistry, 1996, 410, 125-127.	1.9	44
208	Determination of the Gibbs excess of H adsorbed at a $Pt(111)$ electrode surface in the presence of co-adsorbed chloride. Journal of Electroanalytical Chemistry, 2005, 582, 76-84.	1.9	44
209	Oxygen reduction reaction on carbon-supported palladium nanocubes in alkaline media. Electrochemistry Communications, 2016, 64, 9-13.	2.3	44
210	Nitrate reduction on Pt single crystals with Pd multilayer. Electrochimica Acta, 2009, 54, 2094-2101.	2.6	43
211	Electrochemistry at Platinum Single Crystal Electrodes. Electroanalytical Chemistry, A Series of Advances, 2011, , 75-170.	1.7	43
212	Effect of the nature of (100) surface sites on the electroactivity of macroscopic Pt electrodes for the electrooxidation of ammonia. Electrochemistry Communications, 2012, 22, 197-199.	2.3	43
213	CO Adsorption and Oxidation on $Pt(111)$ Electrodes Modified by Irreversibly Adsorbed Bismuth in Sulfuric Acid Medium. Journal of Catalysis, 1995, 152, 264-274.	3.1	42
214	Nature of Br Adlayers on Pt(111) Single-Crystal Surfaces. Voltammetric, Charge Displacement, and ex Situ STM Experiments. The Journal of Physical Chemistry, 1996, 100, 2334-2344.	2.9	42
215	On the Electrochemical and in-Situ Fourier Transform Infrared Spectroscopy Characterization of Urea Adlayers at Pt(100) Electrodes. Langmuir, 1997, 13, 2380-2389.	1.6	42
216	Formic acid oxidation on Pd-modified Pt(100) and Pt(111) electrodes: A DEMS study. Journal of Applied Electrochemistry, 2006, 36, 1207-1214.	1.5	42

#	Article	IF	Citations
217	Electrooxidation of methanol and 2-propanol mixtures at platinum single crystal electrodes. Electrochimica Acta, 2009, 54, 6576-6583.	2.6	42
218	Electrochemical behaviour of irreversibly adsorbed tellurium dosed from solution on Pt(h, k, l) single crystal electrodes in sulphuric and perchloric acid media. Surface Science, 1993, 297, 209-222.	0.8	41
219	Adenine adsorption on Au(111) and Au(100) electrodes: Characterisation, surface reconstruction effects and thermodynamic study. Electrochimica Acta, 2007, 52, 3168-3180.	2.6	41
220	Role of axially coordinated surface sites for electrochemically controlled carbon monoxide adsorption on single crystal copper electrodes. Physical Chemistry Chemical Physics, 2011, 13, 5242.	1.3	41
221	In Situ Infrared Study of the Adsorption and Surface Acidâ^Base Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes. Journal of Physical Chemistry C, 2007, 111, 9943-9952.	1.5	40
222	Shapeâ€Dependent Electrocatalysis: Oxygen Reduction on Carbonâ€Supported Gold Nanoparticles. ChemElectroChem, 2014, 1, 1338-1347.	1.7	40
223	Formic acid self-poisoning on bismuth-modified Pt(755) and Pt(775) electrodes. Electrochemistry Communications, 1999, 1, 87-89.	2.3	39
224	Adsorption of CO at Palladium Monolayers Deposited on Pt(111) Electrodes. Combined Spectroelectrochemical and Theoretical Study. Journal of Physical Chemistry B, 2001, 105, 7263-7271.	1.2	39
225	Adsorbate interactions and phase transitions at the stepped platinum/electrolyte interface: experiment compared with Monte Carlo simulations. Surface Science, 2001, 478, L339-L344.	0.8	39
226	Active centers for Cu UPD–OPD in acid sulfate solution on Pt(111) electrodes. Electrochimica Acta, 2001, 46, 3137-3145.	2.6	39
227	Coulostatic potential transients induced by laser heating of platinum stepped electrodes: influence of steps on the entropy of double layer formation. Journal of Electroanalytical Chemistry, 2004, 561, 157-165.	1.9	39
228	Structural and Spectroelectrochemical Study of Carbonate and Bicarbonate Adsorbed on Pt(111) and Pd/Pt(111) Electrodes. Journal of Physical Chemistry B, 2004, 108, 17928-17939.	1.2	39
229	Carbon-supported shape-controlled Pt nanoparticle electrocatalysts for direct alcohol fuel cells. Electrochemistry Communications, 2015, 55, 47-50.	2.3	39
230	Peroxodisulfate reduction as a probe to interfacial charge. Electrochemistry Communications, 2018, 88, 43-46.	2.3	39
231	An electrochemical study in perchloric acid medium of adlayers formed from irreversible adsorption of nitrite on Pt(100). Journal of Electroanalytical Chemistry, 1993, 359, 315-323.	1.9	38
232	Spectroelectrochemical Examination of the Interaction between Bacterial Cells and Gold Electrodes. Langmuir, 2007, 23, 6459-6466.	1.6	38
233	Electrochemical deposition of copper on stepped platinum surfaces in the [01] zone vicinal to the (100) plane. Journal of Electroanalytical Chemistry, 2008, 624, 228-240.	1.9	38
234	Voltammetry of Basal Plane Platinum Electrodes in Acetonitrile Electrolytes: Effect of the Presence of Water. Langmuir, 2012, 28, 5286-5294.	1.6	38

#	Article	IF	CITATIONS
235	Surface Sensitive Nickel Electrodeposition in Deep Eutectic Solvent. ACS Applied Energy Materials, 2018, 1, 1016-1028.	2.5	38
236	Modeling CO Oxidation on Pt(111) Electrodes. Journal of Physical Chemistry C, 2010, 114, 14154-14163.	1.5	37
237	Pt catalysts modified with Bi: Enhancement of the catalytic activity for alcohol oxidation in alkaline media. Journal of Catalysis, 2014, 312, 78-86.	3.1	37
238	PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media. Electrochemistry Communications, 2015, 56, 11-15.	2.3	37
239	Oxygen electroreduction on carbon-supported Pd nanocubes in acid solutions. Electrochimica Acta, 2016, 188, 301-308.	2.6	37
240	On the pH Dependence of the Potential of Maximum Entropy of Ir(111) Electrodes. Scientific Reports, 2017, 7, 1246.	1.6	37
241	Investigating the presence of adsorbed species on Pt steps at low potentials. Nature Communications, 2022, 13, 2550.	5.8	37
242	Enantiomeric electro-oxidation of d- and l-glucose on chiral gold single crystal surfaces. Electrochemistry Communications, 2003, 5, 741-746.	2.3	36
243	Electrochemical Oxidation of Hydrogen on Basal Plane Platinum Electrodes in Imidazolium Ionic Liquids. Journal of Physical Chemistry C, 2011, 115, 11147-11155.	1.5	36
244	Influence of the CO Adsorption Environment on Its Reactivity with (111) Terrace Sites in Stepped Pt Electrodes under Alkaline Media. Journal of Physical Chemistry C, 2014, 118, 1925-1934.	1.5	36
245	Electrochemical behaviour of oxalic acid on platinum electrodes in acidic medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 281, 199-219.	0.3	35
246	Electrochemical behaviour of Pt(100) in various acidic media. Journal of Electroanalytical Chemistry, 1992, 338, 317-338.	1.9	35
247	The behaviour of platinum single-crystal electrodes in neutral phosphate buffered solutions. Journal of Electroanalytical Chemistry, 1992, 326, 113-127.	1.9	35
248	Formic acid electrooxidation on Bi-modified $Pt(110)$ single crystal electrodes. Journal of Electroanalytical Chemistry, 2009, 637, 63-71.	1.9	35
249	Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles. Electrochemistry Communications, 2011, 13, 1194-1197.	2.3	35
250	Interaction of hydrogen peroxide with a Pt(111) electrode. Electrochemistry Communications, 2012, 22, 153-156.	2.3	35
251	Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution. Journal of the American Chemical Society, 2020, 142, 9439-9446.	6.6	35
252	Influence of alkali cations on the infrared spectra of adsorbed (bi)sulphate on Pt(111) electrodes. Electrochemistry Communications, 2006, 8, 1577-1582.	2.3	34

#	Article	IF	CITATIONS
253	Adenine Adsorption at Single Crystal and Thin-Film Gold Electrodes: An In Situ Infrared Spectroscopy Study. Journal of Physical Chemistry C, 2009, 113, 18784-18794.	1.5	34
254	Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects. Physical Chemistry Chemical Physics, 2011, 13, 16762.	1.3	34
255	In-situ STM and AFM Studies on Electrochemical Interfaces in imidazolium-based ionic liquids. Electrochimica Acta, 2019, 309, 11-17.	2.6	34
256	Voltammetric characterization of Pt single crystal electrodes with basal orientations in trifluoromethanesulphonic acid. Electrochemistry Communications, 2008, 10, 1695-1698.	2.3	33
257	Tailoring properties of platinum supported catalysts by irreversible adsorbed adatoms toward ethanol oxidation for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2013, 140-141, 378-385.	10.8	33
258	The effect of interfacial pH on the surface atomic elemental distribution and on the catalytic reactivity of shape-selected bimetallic nanoparticles towards oxygen reduction. Nano Energy, 2016, 27, 390-401.	8.2	33
259	Nonuniform Synergistic Effect of Sn and Ru in Site-Specific Catalytic Activity of Pt at Bimetallic Surfaces toward CO Electro-oxidation. ACS Catalysis, 2017, 7, 3434-3445.	5.5	33
260	Pt(hkl) surface charge and reactivity. Current Opinion in Electrochemistry, 2019, 17, 97-105.	2.5	33
261	Effects of irreversibly adsorbed bismuth on hydrogen adsorption and evolution on Pt(111). Electrochimica Acta, 1997, 42, 1675-1683.	2.6	32
262	Activation Energies of the Electrooxidation of Formic Acid on Pt(100). Journal of Physical Chemistry C, 2009, 113, 18835-18841.	1.5	32
263	Co adsorption and oxidation on $pt(111)$ electrodes modified by irreversibly adsorbed selenium and tellurium. Journal of Electroanalytical Chemistry, 1996, 412, 165-174.	1.9	31
264	Voltammetry, Charge Displacement Experiments, and Scanning Tunneling Microscopy of the Pt(100)â^'Br System. Langmuir, 1997, 13, 3016-3023.	1.6	31
265	Copper underpotential deposition at high index single crystal surfaces of Au. Journal of Electroanalytical Chemistry, 2004, 570, 157-161.	1.9	31
266	Anion re-adsorption and displacement at platinum single crystal electrodes in CO-containing solutions. Electrochemistry Communications, 2007, 9, 1113-1119.	2.3	31
267	Adsorption of Glycine on Au(<i>hkl</i>) and Gold Thin Film Electrodes: An in Situ Spectroelectrochemical Study. Journal of Physical Chemistry C, 2011, 115, 16439-16450.	1.5	31
268	A comparative study of the adsorption and oxidation of L-alanine and L-serine on $Au(1\ 0\ 0)$, $Au(1\ 1\ 1)$ and gold thin film electrodes in acid media. Electrochimica Acta, 2013, 89, 72-83.	2.6	31
269	Surface Acid–Base Properties of Anion-Adsorbed Species at Pt(111) Electrode Surfaces in Contact with CO ₂ -Containing Perchloric Acid Solutions. Journal of Physical Chemistry C, 2016, 120, 16191-16199.	1.5	31
270	Mechanistic aspects of glycerol electrooxidation on Pt(111) electrode in alkaline media. Electrochemistry Communications, 2018, 86, 149-152.	2.3	31

#	Article	IF	Citations
271	Alkali metal cations and pH effects on a splitting of the unusual adsorption states of Pt(111) voltammograms in phosphate buffered solutions. Journal of Electroanalytical Chemistry, 1993, 345, 475-481.	1.9	30
272	Electrochemical properties of palladium adlayers on Pt(100) substrates. Surface Science, 2004, 573, 32-46.	0.8	30
273	Voltammetric characterization of stepped platinum single crystal surfaces vicinal to the (110) pole. Electrochemistry Communications, 2009, 11, 1515-1518.	2.3	30
274	Electrocatalysis of H2O2 reduction/oxidation at model platinum surfaces. Electrochemistry Communications, 2013, 33, 39-42.	2.3	30
275	Evidence of Local pH Changes during Ethanol Oxidation at Pt Electrodes in Alkaline Media. ChemElectroChem, 2015, 2, 1254-1258.	1.7	30
276	On the activation energy of the formic acid oxidation reaction on platinum electrodes. Journal of Electroanalytical Chemistry, 2015, 742, 90-96.	1.9	30
277	Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: New insights. Electrochemistry Communications, 2017, 78, 51-55.	2.3	30
278	The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes Journal of Electroanalytical Chemistry, 1993, 358, 287-305.	1.9	29
279	Induced Adsorption of Chloride and Bromide by Submonolayer Amounts of Copper Underpotentially Deposited on Pt(111). The Journal of Physical Chemistry, 1994, 98, 5514-5521.	2.9	29
280	Electrochemical Reactivity of Aromatic Molecules at Nanometer-Sized Surface Domains: From $Pt(\langle i \rangle hk \langle i \rangle)$ Single Crystal Electrodes to Preferentially Oriented Platinum Nanoparticles. Journal of the American Chemical Society, 2010, 132, 2233-2242.	6.6	29
281	Rapid screening of silver nanoparticles for the catalytic degradation of chlorinated pollutants in water. Applied Catalysis B: Environmental, 2015, 163, 554-563.	10.8	29
282	Oxygen Reduction on Platinum Surfaces in Acid Media: Experimental Evidence of a CECE/DISP Initial Reaction Path. ACS Catalysis, 2019, 9, 2238-2251.	5.5	29
283	Study of carbon monoxide adsorption and oxidation on Pt(111) by using an electrochemical impinging jet cell. Electrochimica Acta, 1998, 44, 1069-1075.	2.6	28
284	Opportunities behind the unusual ability of geobacter sulfurreducens for exocellular respiration and electricity production. Energy and Environmental Science, 2011, 4, 2066.	15.6	28
285	Study of dopamine reactivity on platinum single crystal electrode surfaces. Electrochimica Acta, 2013, 109, 577-586.	2.6	28
286	The inhibition of hydrogen peroxide reduction at low potentials on Pt(111): Hydrogen adsorption or interfacial charge? Electrochemistry Communications, 2017, 85, 32-35.	2.3	28
287	Loading effect of carbon-supported platinum nanocubes on oxygen electroreduction. Electrochimica Acta, 2017, 251, 155-166.	2.6	28
288	The voltammetry of surfaces vicinal to $Pt\{110\}$: Structural complexity simplified by CO cooling. Journal of Electroanalytical Chemistry, 2017, 793, 137-146.	1.9	28

#	Article	IF	Citations
289	Oxygen reduction at platinum electrodes: The interplay between surface and surroundings properties. Current Opinion in Electrochemistry, 2018, 9, 166-172.	2.5	28
290	New probes to surface free charge at electrochemical interfaces with platinum electrodes. Current Opinion in Electrochemistry, 2019, 14, 16-22.	2.5	28
291	Why the activity of the hydrogen oxidation reaction on platinum decreases as pH increases. Electrochimica Acta, 2020, 354, 136620.	2.6	28
292	FTIRS and electrochemical characterization of the NO adlayer generated by immersion of a Rh(111) electrode in an acidic solution of nitrite. Journal of Electroanalytical Chemistry, 1995, 393, 123-129.	1.9	27
293	Irreversibly adsorbed As at full blockage on Pt(111) electrodes: Surface stoichiometry. Journal of Electroanalytical Chemistry, 1997, 434, 121-127.	1.9	27
294	Determination of different local potentials of zero charge of a Pd–Au(111) heterogeneous surface. Electrochemistry Communications, 2000, 2, 427-430.	2.3	27
295	Urea Adsorption on Platinum Single Crystal Stepped Surfaces. Langmuir, 2001, 17, 8260-8269.	1.6	27
296	Electrochemical characterization and reactivity of Pt nanoparticles supported on single-walled carbon nanotubes. Electrochimica Acta, 2007, 52, 5582-5590.	2.6	27
297	Mechanism of nitrate electroreduction on Pt(100). Russian Journal of Electrochemistry, 2012, 48, 302-315.	0.3	27
298	Formic acid electrooxidation on thallium-decorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 13616-13624.	1.3	27
299	Borohydride electro-oxidation on Pt single crystal electrodes. Electrochemistry Communications, 2015, 51, 144-147.	2.3	27
300	Study of the interface $Pt(111)$ / [Emmim][NTf2] using laser-induced temperature jump experiments. Electrochemistry Communications, 2015, 55, 39-42.	2.3	27
301	Disentangling Catalytic Activity at Terrace and Step Sites on Selectively Ru-Modified Well-Ordered Pt Surfaces Probed by CO Electro-oxidation. ACS Catalysis, 2016, 6, 2997-3007.	5.5	27
302	Investigating interfacial parameters with platinum single crystal electrodes. Russian Journal of Electrochemistry, 2017, 53, 227-236.	0.3	27
303	Electrocatalytic Oxidation of Glycerol on Platinum Single Crystals in Alkaline Media. ChemElectroChem, 2019, 6, 4238-4245.	1.7	27
304	Monte Carlo simulation of CO adlayers electrooxidation on Pt(111). Surface Science, 1998, 416, 371-383.	0.8	26
305	Preparation and electrocatalytic activity of Rh adlayers on Pt(100) electrodes: reduction of nitrous oxide. Electrochemistry Communications, 2001, 3, 659-664.	2.3	26
306	An in situ infrared and electrochemical study of oxalic acid adsorption at stepped platinum single crystal electrodes in the zone. Electrochimica Acta, 2004, 49, 1257-1269.	2.6	26

#	Article	IF	Citations
307	Fundamental aspects of HCOOH oxidation at platinum single crystal surfaces with basal orientations and modified by irreversibly adsorbed adatoms. Journal of Solid State Electrochemistry, 2014, 18, 1181-1193.	1.2	26
308	On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. Journal of Electroanalytical Chemistry, 2014, 716, 16-22.	1.9	26
309	Spectroscopic Study of the Nitric Oxide Adlayers Formed from Nitrous Acid Solutions on Palladium-Covered Platinum Single-Crystal Electrodes. Langmuir, 2000, 16, 4695-4705.	1.6	25
310	Fullerene monolayers adsorbed on high index gold single crystal surfaces. Physical Chemistry Chemical Physics, 2004, 6, 619.	1.3	25
311	Ethylene adsorption and oxidation on Pt(h k l) in acidic media. Surface Science, 2008, 602, 84-94.	0.8	25
312	Adsorption behavior of acetonitrile on platinum and gold electrodes of various structures in solution of 0.5M H2SO4. Electrochimica Acta, 2009, 54, 3692-3699.	2.6	25
313	Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater. Energies, 2015, 8, 14064-14077.	1.6	25
314	Characterization of the interfaces between Au(hkl) single crystal basal plane electrodes and [Emmim] [Tf 2 N] ionic liquid. Electrochemistry Communications, 2016, 62, 44-47.	2.3	25
315	Hydrogen peroxide and oxygen reduction studies on Pt stepped surfaces: Surface charge effects and mechanistic consequences. Electrochimica Acta, 2020, 334, 135452.	2.6	25
316	Irreversible tin adsorption on polyoriented gold electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 256, 455-462.	0.3	24
317	Auger electron spectroscopy, low-energy electron diffraction, and electrochemistry of carbon monoxide on a platinum(100) electrode. The Journal of Physical Chemistry, 1993, 97, 9730-9735.	2.9	24
318	Peroxodisulphate reduction as a novel probe for the study of platinum single crystal/solution interphases. Journal of Electroanalytical Chemistry, 2008, 612, 269-276.	1.9	24
319	Thermodynamic evidence for K+–SO42â^' ion pair formation on Pt(111). New insight into cation specific adsorption. Physical Chemistry Chemical Physics, 2010, 12, 12146.	1.3	24
320	The activity of ALD-prepared PtCo catalysts for ethanol oxidation in alkaline media. Journal of Catalysis, 2014, 309, 38-48.	3.1	24
321	Electrochemical properties of poly $(3,4-ethylenedioxythiophene)$ grown on Pt (111) in imidazolium ionic liquids. RSC Advances, 2014, 4, 3383-3391.	1.7	24
322	Citrate-Coated, Size-Tunable Octahedral Platinum Nanocrystals: A Novel Route for Advanced Electrocatalysts. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41608-41617.	4.0	24
323	Glycerol electrooxidation on Pd modified Au surfaces in alkaline media: Effect of the deposition method. Journal of Chemical Physics, 2019, 150, 041703.	1.2	24
324	The role of formic acid/formate equilibria in the oxidation of formic acid on Pt (111). Electrochemistry Communications, 2019, 98, 10-14.	2.3	24

#	Article	IF	Citations
325	Elucidating the Structure of the Cu-Alkaline Electrochemical Interface with the Laser-Induced Temperature Jump Method. Journal of Physical Chemistry C, 2020, 124, 23253-23259.	1.5	24
326	Anion and electrode surface structure effects on the deposition of metal monolayers: electrochemical and time-resolved surface diffraction studies. Electrochimica Acta, 1998, 43, 2899-2909.	2.6	23
327	Electrochemical Properties of Thin Films of Polythiophene Polymerized on Basal Plane Platinum Electrodes in Nonaqueous Media. Journal of Physical Chemistry B, 2009, 113, 1899-1905.	1.2	23
328	Separation of Temperature Effects on Double-Layer and Charge-Transfer Processes for Platinum Solution Interphases. Entropy of Formation of the Double Layer and Absolute Molar Entropy of Adsorbed Hydrogen and OH on Pt(111). Journal of Physical Chemistry C, 2009, 113, 19913-19925.	1.5	23
329	Heterogeneous electrocatalysis of formic acid oxidation on platinum single crystal electrodes. Current Opinion in Electrochemistry, 2017, 4, 26-31.	2.5	23
330	Two-Dimensional Effects on the in Situ Infrared Spectra of CO Adsorbed at Palladium-Covered Pt(111) Electrode Surfaces. Journal of Physical Chemistry B, 2003, 107, 2018-2028.	1.2	22
331	Carbon monoxide oxidation and nitrous oxide reduction on Rh/Pt(1 $1\ 1$) electrodes. Electrochimica Acta, 2004, 49, 1195-1208.	2.6	22
332	Polymerization of polypyrrole on single crystal platinum electrodes: a surface structure sensitive reaction. Physical Chemistry Chemical Physics, 2008, 10, 7022.	1.3	22
333	Nitrite Reduction on Bismuth Modified Pt(111) Surfaces in Different Electrolytic Media. Electrocatalysis, 2011, 2, 255-262.	1.5	22
334	Trimetallic catalyst based on PtRu modified by irreversible adsorption of Sb for direct ethanol fuel cells. Journal of Catalysis, 2015, 329, 69-77.	3.1	22
335	Understanding CO oxidation reaction on platinum nanoparticles. Journal of Electroanalytical Chemistry, 2017, 793, 126-136.	1.9	22
336	New insight into the electro-oxidation of the irreversibly chemisorbed bismuth on Pt(111) through temperature-dependent research. Journal of Electroanalytical Chemistry, 2002, 519, 111-122.	1.9	21
337	Determination of the entropy of formation of the $Pt(111)\hat{a}$ perchloric acid solution interface. Estimation of the entropy of adsorbed hydrogen and OH species. Journal of Solid State Electrochemistry, 2008, 12, 387-398.	1.2	21
338	The breaking of the CC bond in ethylene glycol oxidation at the Pt(111) electrode and its vicinal surfaces. Electrochemistry Communications, 2014, 45, 40-43.	2.3	21
339	Structure and morphology of shape-controlled Pd nanocrystals. Journal of Applied Crystallography, 2015, 48, 1534-1542.	1.9	21
340	State of the art in the electrochemical characterization of the surface structure of shape-controlled Pt, Au, and Pd nanoparticles. Current Opinion in Electrochemistry, 2020, 22, 65-71.	2.5	21
341	The role of the crystalline surface structure of platinum electrodes in the electrooxidation of d-glucose in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 316, 175-197.	0.3	20
342	Tellurium Adatoms as an In-Situ Surface Probe of (111) Two-Dimensional Domains at Platinum Surfaces. Langmuir, 2006, 22, 10329-10337.	1.6	20

#	Article	IF	Citations
343	On the apparent lack of preferential site occupancy and electrooxidation of CO adsorbed at low coverage onto stepped platinum surfaces. Electrochemistry Communications, 2011, 13, 338-341.	2.3	20
344	Synthesis and Electrocatalytic Properties of H ₂ SO ₄ â€Induced (100) Pt Nanoparticles Prepared in Waterâ€inâ€Oil Microemulsion. ChemPhysChem, 2014, 15, 1997-2001.	1.0	20
345	Electrochemical reduction of CO2 in water-acetonitrile mixtures on nanostructured Cu electrode. Electrochemistry Communications, 2015, 61, 74-77.	2.3	20
346	Oxidation of ethanol on platinum nanoparticles: surface structure and aggregation effects in alkaline medium. Journal of Solid State Electrochemistry, 2016, 20, 1095-1106.	1.2	20
347	Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium. Langmuir, 2017, 33, 865-871.	1.6	20
348	Site-specific catalytic activity of model platinum surfaces in different electrolytic environments as monitored by the CO oxidation reaction. Journal of Catalysis, 2017, 345, 216-227.	3.1	20
349	Understandings on the Inhibition of Oxygen Reduction Reaction by Bromide Adsorption on Pt(111) Electrodes at Different pH Values. Journal of the Electrochemical Society, 2018, 165, J3045-J3051.	1.3	20
350	Comprehensive Study of the Enzymatic Catalysis of the Electrochemical Oxygen Reduction Reaction (ORR) by Immobilized Copper Efflux Oxidase (CueO) From Escherichia coli. Frontiers in Chemistry, 2018, 6, 358.	1.8	20
351	Surface Structure Characterization of Shape and Size Controlled Pd Nanoparticles by Cu UPD: A Quantitative Approach. Frontiers in Chemistry, 2019, 7, 527.	1.8	20
352	Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH) ₂ -Modified Cu(111). ACS Catalysis, 2021, 11, 10324-10332.	5.5	20
353	Bromine monolayer adsorption on $Pt(110)$ surfaces. Journal of Electroanalytical Chemistry, 1999, 467, 11-19.	1.9	19
354	Long-range effects on palladium deposited on $Pt(111)$. Electrochemistry Communications, 2002, 4, 379-383.	2.3	19
355	Specific and Reversible Immobilization of Proteins Tagged to the Affinity Polypeptide C-LytA on Functionalized Graphite Electrodes. PLoS ONE, 2014, 9, e87995.	1.1	19
356	Why Citrate Shapes Tetrahedral and Octahedral Colloidal Platinum Nanoparticles in Water. Journal of Physical Chemistry C, 2018, 122, 19004-19014.	1.5	19
357	Acetonitrile Adsorption on Pt Single-Crystal Electrodes and Its Effect on Oxygen Reduction Reaction in Acidic and Alkaline Aqueous Solutions. Journal of Physical Chemistry C, 2019, 123, 2300-2313.	1.5	19
358	Coherent Bragg imaging of 60â€nm Au nanoparticles under electrochemical control at the NanoMAX beamline. Journal of Synchrotron Radiation, 2019, 26, 1830-1834.	1.0	19
359	Electrocatalytic oxidation of L(+)-ascorbic acid on single crystal Pt surfaces modified by irreversibly adsorbed Bi. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 260, 237-244.	0.3	18
360	Electrochemical behaviour of squaric acid on single-crystal platinum electrodes with basal orientations in aqueous sulphuric acid medium. Journal of Electroanalytical Chemistry, 1992, 334, 291-307.	1.9	18

#	Article	IF	CITATIONS
361	Urea Adsorption at Rhodium Single-Crystal Electrodes. Langmuir, 2000, 16, 10376-10384.	1.6	18
362	Temperature-Dependence of the Electro-oxidation of the Irreversibly Chemisorbed As on $Pt(111)$. Langmuir, 2001, 17, 3030-3038.	1.6	18
363	Electrochemical reactivity in nanoscale domains: O2 reduction on a fullerene modified gold surface. Physical Chemistry Chemical Physics, 2005, 7, 1293.	1.3	18
364	Characterization of (111) surface tailored Pt nanoparticles by electrochemistry and X-ray powder diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 83-90.	2.6	18
365	Effect of the Surface Structure of $Pt(100)$ and $Pt(110)$ on the Oxidation of Carbon Monoxide in Alkaline Solution: an FTIR and Electrochemical Study. Electrocatalysis, 2011, 2, 242-253.	1.5	18
366	Mechanistic changes observed in heavy water for nitrate reduction reaction on palladium-modified Pt(hkl) electrodes. Chemical Science, 2012, 3, 3063.	3.7	18
367	On the quality and stability of preferentially oriented (100) Pt nanoparticles: An electrochemical insight. Journal of Electroanalytical Chemistry, 2018, 808, 433-438.	1.9	18
368	Identity of the Most and Least Active Sites for Activation of the Pathways for CO ₂ Formation from the Electro-oxidation of Methanol and Ethanol on Platinum. ACS Catalysis, 2020, 10, 543-555.	5. 5	18
369	Effect of surface long-range order in aniline interaction with Pt(111) electrodes in acid medium. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 288, 277-283.	0.3	17
370	Positive shift of the potential of zero total charge of stepped Pt(111) electrodes decorated by irreversibly adsorbed bismuth. Electrochemistry Communications, 2001, 3, 590-594.	2.3	17
371	Bulk CO oxidation on platinum electrodes vicinal to the Pt(111) surface. Journal of Solid State Electrochemistry, 2007, 11, 1531-1539.	1.2	17
372	Mechanism of copper underpotential deposition at Pt(hkl)-electrodes: Quantum-chemical modelling. Russian Journal of Electrochemistry, 2008, 44, 697-708.	0.3	17
373	Methodical aspects of studying the electroreduction of nitrate on modified single crystal Pt(hkl) + Cu electrodes. Russian Journal of Electrochemistry, 2009, 45, 1052-1063.	0.3	17
374	IR and electrochemical synthesis and characterization of thin films of PEDOT grown on platinum single crystal electrodes in [EMMIM]Tf ₂ N ionic liquid. Beilstein Journal of Organic Chemistry, 2015, 11, 348-357.	1.3	17
375	Bromide Adsorption on Pt(111) over a Wide Range of pH: Cyclic Voltammetry and CO Displacement Experiments. Journal of Physical Chemistry C, 2018, 122, 18562-18569.	1.5	17
376	Investigating the M(hkl) \mid ionic liquid interface by using laser induced temperature jump technique. Electrochimica Acta, 2019, 311, 30-40.	2.6	17
377	Role of OH Intermediates during the Au Oxide Electro-Reduction at Low pH Elucidated by Electrochemical Surface-Enhanced Raman Spectroscopy and Implicit Solvent Density Functional Theory. ACS Catalysis, 2020, 10, 12716-12726.	5.5	17
378	Glucose electro-oxidation on Pt(100) in phosphate buffer solution (pH 7): A mechanistic study. Electrochimica Acta, 2020, 354, 136765.	2.6	17

#	Article	IF	Citations
379	Investigation of reactivity of Pt basal planes towards glucose electro-oxidation in neutral solution (pHÂ7): structure-sensitivity dependence and mechanistic study. Journal of Electroanalytical Chemistry, 2020, 878, 114549.	1.9	17
380	Single Crystal Electrochemistry as an In Situ Analytical Characterization Tool. Annual Review of Analytical Chemistry, 2020, 13, 201-222.	2.8	17
381	FTIR study of the electrochemical behaviour of squaric acid on polycrystalline platinum electrodes in 0.5 M H2SO4. Journal of Electroanalytical Chemistry, 1993, 352, 345-352.	1.9	16
382	The underpotential deposition of cadmium on $Pt(1\ 1\ 1)$: effect of the anions and CO displacement experiments. Journal of Electroanalytical Chemistry, 2003, 554-555, 145-156.	1.9	16
383	Reduction of CO2 on bismuth modified $Pt(110)$ single-crystal surfaces. Effect of bismuth and poisoning intermediates on the rate of hydrogen evolution. Electrochimica Acta, 2011, 56, 4451-4456.	2.6	16
384	Electrochemical features of Pt(S)[n(110) \tilde{A} —(100)] surfaces in acidic media. Electrochemistry Communications, 2013, 34, 291-294.	2.3	16
385	Role of the interfacial water structure on electrocatalysis: Oxygen reduction on $Pt(1\ 1\ 1)$ in methanesulfonic acid. Catalysis Today, 2016, 262, 95-99.	2.2	16
386	Thermodynamic properties of hydrogen–water adsorption at terraces and steps of Pt(111) vicinal surface electrodes. Surface Science, 2016, 646, 269-281.	0.8	16
387	Unraveling the Nature of Active Sites in Ethanol Electro-oxidation by Site-Specific Marking of a Pt Catalyst with Isotope-Labeled 13CO. Journal of Physical Chemistry Letters, 2018, 9, 1206-1210.	2.1	16
388	Underpotential deposition of Nickel on platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 2018, 819, 391-400.	1.9	16
389	Analysis of catechol, 4-methylcatechol and dopamine electrochemical reactions on different substrate materials and pH conditions. Electrochimica Acta, 2018, 292, 309-321.	2.6	16
390	Stark effect or coverage dependence? Disentangling the EC-SEIRAS vibrational shift of sulfate on Au(111). Journal of Chemical Physics, 2019, 150, 041709.	1.2	16
391	The influence of polyoriented gold electrodes modified by reversibly and irreversibly adsorbed ad-atoms on the redox behaviour of the Cr(III) / Cr(II). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 271, 127-139.	0.3	15
392	The Underpotential Deposition of Copper on Pt(311): Site Selective Deposition and Anion Effects. Langmuir, 1994, 10, 4315-4323.	1.6	15
393	Anion Effects and Induced Adsorption of Chloride by Submonolayer Amounts of Copper on Deliberately Stepped Platinum Surfaces. Journal of Physical Chemistry B, 2000, 104, 5932-5939.	1.2	15
394	Kinetics of underpotential deposition and nucleation of copper on the Pt(111) face in the presence of acetonitrile. Russian Journal of Electrochemistry, 2006, 42, 381-392.	0.3	15
395	Adatom modified shape-controlled platinum nanoparticles towards ethanol oxidation. Electrochimica Acta, 2016, 196, 270-279.	2.6	15
396	Electrocatalytic oxidation and reduction of H2O2 on Au single crystals. Russian Journal of Electrochemistry, 2017, 53, 1029-1041.	0.3	15

#	Article	IF	Citations
397	New insights into the Pt(hkl)-alkaline solution interphases from the laser induced temperature jump method. Journal of Electroanalytical Chemistry, 2020, 872, 114068.	1.9	15
398	In Situ UV-Visible Reflectance Spectroscopy on Single Crystal Pt(111) Microfacets. Electrochemical and Solid-State Letters, 2005, 8, E9.	2.2	14
399	Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide on platinum single crystal electrodes. Electrochemistry Communications, 2014, 46, 84-86.	2.3	14
400	Crystallographic orientation and electrode nature are key factors for electric current generation by Geobacter sulfurreducens. Bioelectrochemistry, 2014, 98, 11-19.	2.4	14
401	Role of oxygen-containing species at $Pt(111)$ on the oxygen reduction reaction in acid media. Journal of Solid State Electrochemistry, 2015, 19, 2831-2841.	1.2	14
402	Electroreduction of Oxygen on PdPt Alloy Nanocubes in Alkaline and Acidic Media. ChemElectroChem, 2017, 4, 2547-2555.	1.7	14
403	Electrocatalytic enhancement of formic acid oxidation reaction by acetonitrile on well-defined platinum surfaces. Electrochimica Acta, 2019, 295, 835-845.	2.6	14
404	Detection of Superoxide Anion Oxygen Reduction Reaction Intermediate on Pt(111) by Infrared Reflection Absorption Spectroscopy in Neutral pH Conditions. Journal of Physical Chemistry Letters, 2021, 12, 1588-1592.	2.1	14
405	New insights into the hydrogen peroxide reduction reaction and its comparison with the oxygen reduction reaction in alkaline media on well-defined platinum surfaces. Journal of Catalysis, 2021, 398, 123-132.	3.1	14
406	Oxygen reduction reaction on Pd nanoparticles supported on novel mesoporous carbon materials. Electrochimica Acta, 2021, 394, 139132.	2.6	14
407	Selective electrocatalysis of acetaldehyde oxime reduction on (111) sites of platinum single crystal electrodes and nanoparticles surfaces. Journal of Solid State Electrochemistry, 2008, 12, 575-581.	1.2	13
408	Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion. Journal of Nanoparticle Research, 2010, 12, 1149-1159.	0.8	13
409	Kinetic study of CO oxidation on step decorated $Pt(111)$ vicinal single crystal electrodes. Electrochimica Acta, 2011 , 56 , 5993 - 6000 .	2.6	13
410	Pd-Modified Shape-Controlled Pt Nanoparticles Towards Formic Acid Electrooxidation. Electrocatalysis, 2012, 3, 313-323.	1.5	13
411	Temperature effects on platinum single-crystal electrodes. Russian Journal of Electrochemistry, 2012, 48, 271-280.	0.3	13
412	Real-time monitoring of electrochemically active biofilm developing behavior on bioanode by using EQCM and ATR/FTIR. Sensors and Actuators B: Chemical, 2015, 209, 781-789.	4.0	13
413	Potential oscillations during electro-oxidation of ethanol on platinum in alkaline media: The role of surface sites. Electrochemistry Communications, 2016, 72, 83-86.	2.3	13
414	Effects of the Interfacial Structure on the Methanol Oxidation on Platinum Single Crystal Electrodes. Surfaces, 2019, 2, 177-192.	1.0	13

#	Article	IF	CITATIONS
415	Activation Energy of Hydrogen Adsorption on Pt(111) in Alkaline Media: An Impedance Spectroscopy Study at Variable Temperatures. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42911-42917.	4.0	13
416	Kinetics of adenine adsorption on $Au(111)$ electrodes: An impedance study. Electrochimica Acta, 2010, 55, 3301-3306.	2.6	12
417	Electrochemical and electrocatalytic properties of thin films of poly(3,4-ethylenedioxythiophene) grown on basal plane platinum electrodes. Physical Chemistry Chemical Physics, 2012, 14, 14391.	1.3	12
418	Unusually High Activity of Pt Islands on Rh(1 1 1) Electrodes for Ethanol Oxidation. ChemCatChem, 201 5, 1350-1353.	³ , _{1.8}	12
419	Chronoamperometric Study of Ammonia Oxidation in a Direct Ammonia Alkaline Fuel Cell under the Influence of Microgravity. Microgravity Science and Technology, 2017, 29, 253-261.	0.7	12
420	Formic acid electrooxidation on thallium modified platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 2017, 800, 82-88.	1.9	12
421	Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Advances, 2018, 8, 12742-12751.	1.7	12
422	The Role of Surface Sites on the Oscillatory Oxidation of Methanol on Stepped $Pt[n(111) \tilde{A}-(110)]$ Electrodes. Journal of Physical Chemistry C, 2020, 124, 10993-11004.	1.5	12
423	Energy and economic advantages of simultaneous hydrogen and biogas production in microbial electrolysis cells as a function of the applied voltage and biomass content. Sustainable Energy and Fuels, 2021, 5, 2003-2017.	2.5	12
424	Reactivity of pyrrole pigments. part 6. Tetrahedron, 1985, 41, 1713-1720.	1.0	11
425	The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 1999, 467, 20-29.	1.9	11
426	Preparation and Electrochemical Behavior of Ordered Rh Adlayers on Pt(100) Electrodes. Langmuir, 2005, 21, 7439-7448.	1.6	11
427	The behavior of HBF4 at Pt single crystal electrodes. Journal of Electroanalytical Chemistry, 2010, 646, 100-106.	1.9	11
428	SERS on (111) Surface Nanofacets at Pt Nanoparticles: The Case of Acetaldehyde Oxime Reduction. Journal of Physical Chemistry C, 2012, 116, 10781-10789.	1.5	11
429	Kinetics and mechanism of nitrate and nitrite electroreduction on Pt(100) electrodes modified by copper adatoms. Russian Journal of Electrochemistry, 2013, 49, 285-293.	0.3	11
430	ATR-SEIRAS study of CO adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1 M H2SO4. Electrochimica Acta, 2015, 176, 1202-1213.	2.6	11
431	Interaction of water with methanesulfonic acid on Pt single crystal electrodes. Electrochemistry Communications, 2015, 50, 47-50.	2.3	11
432	Oxide formation as probe to investigate the competition between water and alcohol molecules for OH species adsorbed on platinum. Electrochimica Acta, 2019, 317, 694-700.	2.6	11

#	Article	IF	CITATIONS
433	Investigation of the interfacial properties of platinum stepped surfaces using peroxodisulfate reduction as a local probe. Electrochimica Acta, 2019, 307, 553-563.	2.6	11
434	Determination of Specific Electrocatalytic Sites in the Oxidation of Small Molecules on Crystalline Metal Surfaces. Topics in Current Chemistry, 2019, 377, 5.	3.0	11
435	Analysis of the anodic processes of 8-hydroxyquinoline in AcOH-AcONa buffer on mercury. Collection of Czechoslovak Chemical Communications, 1984, 49, 481-489.	1.0	11
436	Polarographic and voltammetric studies of 8-hydroxyquinoline and 8-hydroxy- 5-quinolinesulfonic acid in aqueous solutions—basic media. Electrochimica Acta, 1982, 27, 1475-1479.	2.6	10
437	Underpotential electrodeposition of Ag on iodine-covered Pt single-crystal electrodes. Journal of Electroanalytical Chemistry, 2000, 488, 32-41.	1.9	10
438	CO Oxidation on Pt-Modified Rh(111) Electrodes. ChemPhysChem, 2005, 6, 1522-1529.	1.0	10
439	Model System for the Study of 2D Phase Transitions and Supramolecular Interactions at Electrified Interfaces:  Hydrogen-Assisted Reductive Desorption of Catechol-Derived Adlayers from Pt(111) Single-Crystal Electrodes. Langmuir, 2008, 24, 3551-3561.	1.6	10
440	Electrochemical properties of palladium adlayers on Pt(110) substrates. Journal of Electroanalytical Chemistry, 2011, 660, 276-284.	1,9	10
441	Enhanced electrochemical reversibility of ultrathin aniline oligomer films grown on Pt(111). Electrochemistry Communications, 2011, 13, 1304-1308.	2.3	10
442	The Role of PtOH on H ₂ O ₂ Interactions with Platinum Surfaces in an Electrochemical Environment. ChemElectroChem, 2014, 1, 55-58.	1.7	10
443	Cu UPD at Pt(100) and stepped faces Pt(610), Pt(410) of platinum single crystal electrodes. Russian Journal of Electrochemistry, 2016, 52, 890-900.	0.3	10
444	Electrochemical detection of cytosine and 5-methylcytosine on Au(111) surfaces. Electrochemistry Communications, 2016, 65, 27-30.	2.3	10
445	Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detection. Electrochimica Acta, 2017, 251, 60-70.	2.6	10
446	The influence of stepped $Pt[n(111)\tilde{A}-(110)]$ electrodes towards glycerol electrooxidation: Electrochemical and FTIR studies. Electrochimica Acta, 2020, 346, 136187.	2.6	10
447	Voltammetric and subtractively normalized interfacial FTIR study of the adsorption and oxidation of L(+)-ascorbic acid on Pt electrodes in acid medium: effect of Bi adatoms. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 609-615.	1.7	9
448	Hydrogen-assisted and CO-assisted reductive desorption of hydroquinone-derived adlayers from Pt(111) single crystal electrodes. Journal of Electroanalytical Chemistry, 2006, 594, 143-151.	1.9	9
449	Kinetics of copper UPD on stepped platinum single crystals in the presence of acetonitrile. Electrochemistry Communications, 2008, 10, 502-505.	2.3	9
450	Electrochemical Characterisation of Platinum Nanoparticles Prepared in a Waterâ€inâ€Oil Microemulsion in the Presence of Different Modifiers and Metal Precursors. ChemElectroChem, 2016, 3, 1601-1608.	1.7	9

#	Article	IF	CITATIONS
451	Structure, surface chemistry and electrochemical de-alloying of bimetallic PtxAg100-x nanoparticles: Quantifying the changes in the surface properties for adsorption and electrocatalytic transformation upon selective Ag removal. Journal of Electroanalytical Chemistry, 2017, 793, 164-173.	1.9	9
452	DFT and spectroelectrochemical study of cyanate adsorption on gold single crystal electrodes in neutral medium. Journal of Electroanalytical Chemistry, 2017, 793, 147-156.	1.9	9
453	A conventional symmetric biosupercapacitor based on rusticyanin modified gold electrodes. Journal of Electroanalytical Chemistry, 2018, 816, 253-258.	1.9	9
454	Toward a quantitative theoretical method for infrared and Raman spectroscopic studies on single-crystal electrode/liquid interfaces. Chemical Science, 2020, 11, 1425-1430.	3.7	9
455	Recent progress on oxygen and hydrogen peroxide reduction reactions on Pt single crystal electrodes. Chinese Journal of Catalysis, 2020, 41, 732-738.	6.9	9
456	Small (<5â€nm), Clean, and Wellâ€Structured Cubic Platinum Nanoparticles: Synthesis and Electrochemical Characterization. ChemElectroChem, 2021, 8, 49-52.	1.7	9
457	Spontaneous deposition of Sn on Au(111). An in situ STM study. Electrochemistry Communications, 2008, 10, 1583-1586.	2.3	8
458	Domain-Selective Reactivity of Hydroquinone-Derived Adlayers at Basal Pt(hkl) Single-Crystal Electrodes. Langmuir, 2009, 25, 10337-10344.	1.6	8
459	Spectroelectrochemical behavior of 4-aminobenzenethiol on nanostructured platinum and silver electrodes. Surface Science, 2015, 631, 213-219.	0.8	8
460	Recent Advances in the Use of Shape-Controlled Metal Nanoparticles in Electrocatalysis. Nanostructure Science and Technology, 2016, , 31-92.	0.1	8
461	Spectroelectrochemical detection of specifically adsorbed cyanurate anions at gold electrodes with (111) orientation in contact with cyanate and cyanuric acid neutral solutions. Journal of Electroanalytical Chemistry, 2017, 800, 167-175.	1.9	8
462	Use of CO as a Cleaning Tool of Highly Active Surfaces in Contact with Ionic Liquids: Ni Deposition on $Pt(111)$ Surfaces in IL. ACS Applied Energy Materials, 2018, 1, 4617-4625.	2.5	8
463	Interfacial Study of Nickelâ€Modified Pt(111) Surfaces in Phosphateâ€Containing Solutions: Effect on the Hydrogen Evolution Reaction. ChemPhysChem, 2019, 20, 3056-3066.	1.0	8
464	Nitrate anion reduction in aqueous perchloric acid as an electrochemical probe of Pt{1â€1â€0}-(1â€Ã—â€1) terrace sites. Journal of Catalysis, 2019, 378, 238-247.	3.1	8
465	SO2 electrooxidation reaction on Pt single crystal surfaces in acidic media: Electrochemical and in situ FTIR studies. Electrochimica Acta, 2022, 403, 139601.	2.6	8
466	Ethanol Electro-oxidation Reaction Selectivity on Platinum in Aqueous Media. ACS Sustainable Chemistry and Engineering, 2023, 11, 4960-4968.	3.2	8
467	Anodic behaviour of a mercury electrode in aqueous 8-hydroxyquinoline solutions. Electrochimica Acta, 1982, 27, 1003-1006.	2.6	7
468	Voltammetric study of the electrochemical behaviour of glycolic acid solutions in sulphuric acid on platinum single-crystal electrodes with basal orientations. Journal of Electroanalytical Chemistry, 1992, 323, 303-318.	1.9	7

#	Article	IF	CITATIONS
469	A voltammetric study of glyoxylic acid behaviour on platinum single-crystal electrodes in sulphuric acid medium. Journal of Electroanalytical Chemistry, 1993, 347, 355-370.	1.9	7
470	Photoemission studies of chiral metal surfaces using circularly polarized synchrotron radiation. Physical Review B, 2001, 64, .	1.1	7
471	1 Temperature Effects on Platinum Single-Crystal/Aqueous Solution Interphases. Combining Gibbs Thermodynamics with Laser-Pulsed Experiments. Modern Aspects of Electrochemistry, 2011, , 1-105.	0.2	7
472	Redox transformations of adsorbed NO molecules on a Pt(100) electrode. Russian Journal of Electrochemistry, 2014, 50, 370-378.	0.3	7
473	Effect of surface structure of platinum single crystal electrodes on the electrochemical reduction of CO2 in methanol-water mixtures. Journal of Electroanalytical Chemistry, 2017, 793, 157-163.	1.9	7
474	Monitoring of CO Binding Sites on Stepped Pt Single Crystal Electrodes in Alkaline Solutions by in Situ FTIR Spectroscopy. Langmuir, 2020, 36, 704-714.	1.6	7
475	Oxidative adsorption and hydrogen-mediated desorption of parabanic acid on Pt(111) electrodes. Journal of Electroanalytical Chemistry, 2003, 550-551, 53-65.	1.9	6
476	Nitrate Reduction on Platinum (111) Surfaces Modifiedl with Bi: Single Crystalsl and Nanoparticles. Zeitschrift Fur Physikalische Chemie, 2012, 226, 901-917.	1.4	6
477	Trimesic acid on Cu in ethanol: Potential-dependent transition from 2-D adsorbate to 3-D metal-organic framework. Journal of Electroanalytical Chemistry, 2017, 793, 226-234.	1.9	6
478	Requirement of initial long-range substrate structure in unusual CO pre-oxidation on Pt(111) electrodes. Electrochemistry Communications, 2018, 97, 60-63.	2.3	6
479	Regularities of nitrate electroreduction on $Pt(S)[n(100)x(110)]$ stepped platinum single crystals modified by copper adatoms. Electrochimica Acta, 2018, 278, 165-175.	2.6	6
480	Surface Defects as Ingredients That Can Improve or Inhibit the Pathways for CO Oxidation at Low Overpotentials Using Pt(111)-Type Catalysts. Journal of Physical Chemistry C, 2020, 124, 26583-26595.	1.5	6
481	Future tasks in interfacial electrochemistry and surface reactivity. Journal of Solid State Electrochemistry, 2020, 24, 2073-2075.	1.2	6
482	Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles. Journal of Electroanalytical Chemistry, 2020, 875, 114015.	1.9	6
483	The role of adsorbates in electrocatalytic systems: An analysis of model systems with single crystals. Current Opinion in Electrochemistry, 2021, 26, 100666.	2.5	6
484	Cation Effects on Interfacial Water Structure and Hydrogen Peroxide Reduction on Pt(111). ACS Measurement Science Au, 2021, 1, 48-55.	1.9	6
485	On the behavior of CTAB/CTAOH adlayers on gold single crystal surfaces. Electrochimica Acta, 2021, 391, 138947.	2.6	6
486	Reactivity of Pt(h,k,l) surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134, 133-143.	2.3	5

#	Article	IF	Citations
487	Chirality at Well-Defined Metal Surfaces. ACS Symposium Series, 2002, , 254-268.	0.5	5
488	NO adsorption on Pt (111)/Bi surfaces. Electrochemistry Communications, 2013, 34, 37-40.	2.3	5
489	Oxidation of Ethanol and Its Derivatives on Well Defined Pt Single Crystal Electrodes Vicinal to Pt(111): A Comparative Study. ECS Transactions, 2013, 53, 11-22.	0.3	5
490	Thermodynamic studies of anion adsorption at the $Pt(111)$ electrode surface from glycolic acid solutions. Journal of Solid State Electrochemistry, 2015, 19, 13-21.	1.2	5
491	New insight on the behavior of the irreversible adsorption and underpotential deposition of thallium on platinum (111) and vicinal surfaces in acid electrolytes. Electrochimica Acta, 2015, 151, 319-325.	2.6	5
492	Formation of cyanuric acid from cyanate adsorbed at gold electrodes. Electrochemistry Communications, 2017, 74, 1-4.	2.3	5
493	Spectroelectrochemical and Density Functional Theory Study of Squaric Acid Adsorption and Oxidation at Gold Thin Film and Single Crystal Electrodes. Journal of Physical Chemistry C, 2018, 122, 22352-22365.	1.5	5
494	Peroxodisulfate reduction on platinum stepped surfaces vicinal to the (110) and (100) poles. Journal of Electroanalytical Chemistry, 2019, 847, 113226.	1.9	5
495	Vibrational Properties of Pd Nanocubes. Nanomaterials, 2019, 9, 609.	1.9	5
496	Electrochemical Properties of Pd/Pt(111) Adlayers. , 2002, , 37-52.		5
497	Oxygen electroreduction on small ($<$ 10 nm) and $\{100\}$ -oriented Pt nanoparticles. Electrochimica Acta, 2022, 403, 139631.	2.6	5
498	In-situ FTIR Studies on the Acid–Base Equilibria of Adsorbed Species on Well-Defined Metal Electrode Surfaces. , 2007, , 1-32.		4
499	Dimethoxymethane electrooxidation on low index planes of platinum single crystal in acid media. Electrochimica Acta, 2008, 54, 394-402.	2.6	4
500	Use of Model Pt(111) Single Crystal Electrodes under HMRDE Configuration To Study the Redox Mechanism for Charge Injection at Aromatic/Metal Interfaces. Langmuir, 2010, 26, 2124-2129.	1.6	4
501	Imaging decorated platinum single crystal electrodes by scanning electrochemical microscopy. Electrochimica Acta, 2011, 56, 10708-10712.	2.6	4
502	Catalysis of poly(3,4-ethylenedioxythiophene)-Pt(hkl) electrodes towards 2,5-dimercapto-1,3,4-thiadiazole in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. Electrochimica Acta, 2016, 218, 54-57.	2.6	4
503	Rational Design of Electrocatalytic Interfaces: Cd UPD Mediated Nitrate Reduction on Pd: Au Bimetallic Surfaces. Journal of the Electrochemical Society, 2019, 166, H640-H643.	1.3	4
504	Potential-induced acid-base chemistry of adsorbed species. Electrochimica Acta, 2019, 324, 134793.	2.6	4

#	Article	IF	CITATIONS
505	Formic acid electrooxidation on small, {1 0 0} structured, and Pd decorated carbon-supported Pt nanoparticles. Journal of Catalysis, 2021, 400, 140-147.	3.1	4
506	Cu(111) single crystal electrodes: Modifying interfacial properties to tailor electrocatalysis. Electrochimica Acta, 2021, 396, 139222.	2.6	4
507	Etude de l'effet de prétraitements sur la topographie des surfaces orientées de platine par deux méthodes indépendantes : voltammétrie et STM. European Physical Journal Special Topics, 1994, 04, C1-303-C1-308.	0.2	3
508	FTIR study of surface structure influence on the electrochemical behaviour of the ascorbate anion at platinum electrodes in neutral solutions. Journal of Electroanalytical Chemistry, 1994, 374, 263-268.	1.9	3
509	Anion Adsorption and Charge Transfer on Single-Crystal Electrodes. ACS Symposium Series, 1997, , 156-170.	0.5	3
510	Surface excesses at very low concentrations from extrapolation of thermodynamic data: A way to explore beyond practical limits from reliable experimental data. Journal of Electroanalytical Chemistry, 2010, 649, 119-125.	1.9	3
511	Two-dimensional Cu deposition on Pt(100) and stepped surfaces of platinum single crystals. Electrochimica Acta, 2016, 194, 385-393.	2.6	3
512	Voltammetric and in situ infrared spectroscopy studies of hydroxyurea electrooxidation at Au(111) electrodes in HClO4 solutions. Electrochemistry Communications, 2017, 76, 34-37.	2.3	3
513	The Role of Adsorption in the Electrocatalysis of Hydrazine on Platinum Electrodes. ChemElectroChem, 2017, 4, 1130-1134.	1.7	3
514	Charge effects on the behavior of CTAB adsorbed on $Au(111)$ electrodes in aqueous solutions. Electrochimica Acta, 2021, 370, 137737.	2.6	3
515	Effet de la structure cristalline sur les propriétés d'adsorption des électrodes de platine. European Physical Journal Special Topics, 1994, 04, C1-75-C1-93.	0.2	3
516	On the thermodynamics of hydrogen adsorption over $Pt(111)$ in 0.05M NaOH. Journal of Chemical Physics, 2021, 155, 244704.	1.2	3
517	Changes in Pt(111) Two-dimensional Long-range Order Induced by Slow Mercury Adsorption and Alloying. Russian Journal of Electrochemistry, 2002, 38, 754-767.	0.3	2
518	Au Electrocatalysis for Oxygen Reduction. Lecture Notes in Energy, 2013, , 483-512.	0.2	2
519	Adsorption and first stages of polymerization of aniline on platinum single crystal electrodes. Synthetic Metals, 2014, 196, 61-67.	2.1	2
520	Preface to the Kohei Uosaki Festschrift: Electrochemistry of Ordered Interfaces—Design, Construction, and Interrogation of Functional Electrochemical Interphases with Atomic/Molecular Resolution. Journal of Physical Chemistry C, 2016, 120, 15527-15529.	1.5	2
521	Weakening the C C bond: On the behavior of glyoxylic acid on Pt(111) and its vicinal surfaces. Journal of Electroanalytical Chemistry, 2016, 779, 75-85.	1.9	2
522	Structure effects on electrocatalysts. Oxygen reduction on Te-modified Pt(111) surfaces: Site-blocking vs electronic effects. Journal of Chemical Physics, 2020, 152, 134702.	1.2	2

#	Article	IF	CITATIONS
523	Glutamate adsorption on the $Au(111)$ surface at different pH values. Journal of Electroanalytical Chemistry, 2021, 880, 114870.	1.9	2
524	Surface charge and interfacial acid-base properties: pKa,2 of carbon dioxide at Pt(110)/perchloric acid solution interfaces Electrochimica Acta, 2021, 388, 138639.	2.6	2
525	Determination of the potential of zero charge of Pt/CO electrodes using an impinging jet system. Journal of Solid State Electrochemistry, 2020, 24, 2871-2881.	1.2	2
526	Size-Dependent and Step-Modulated Supramolecular Electrochemical Properties of Catechol-Derived Adlayers at Pt(<i>hkl</i>) Surfaces. Langmuir, 2013, 29, 13102-13110.	1.6	1
527	Electrodimerization of quinoline derivatives. 5-Chloro- and 5, 7-dichloro-8-hydroxyquinoline. Electrochimica Acta, 1987, 32, 1431-1433.	2.6	0
528	Title is missing!. Electrochimica Acta, 2001, 46, 3049.	2.6	0
529	Kinetics at Single Crystal Electrodes. , 2017, , 113-146.		O
530	Preface: Richard G. Compton. Journal of Electroanalytical Chemistry, 2020, 872, 114526.	1.9	0
531	Electrochemical Control of the Core-Shell Cobalt-Platinum Nanoparticles., 2015,, 1-11.		0
532	Electrochemical Control of the Core-Shell Cobalt-Platinum Nanoparticles. , 2016, , 769-782.		0
533	Determination of Specific Electrocatalytic Sites in the Oxidation of Small Molecules on Crystalline Metal Surfaces. Topics in Current Chemistry Collections, 2020, , 79-103.	0.2	0
534	Cu(111) and $Ni(OH)2$ modified $Cu(111)$: interfacial water structure and electrocatalysis. , 0, , .		0