Gonzalo Santoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Steering Hydrocarbon Selectivity in CO ₂ Electroreduction over Soft-Landed CuO _{<i>x</i>} Nanoparticle-Functionalized Gas Diffusion Electrodes. ACS Applied Materials & Interfaces, 2022, 14, 2691-2702.	8.0	9
2	Silicon and Hydrogen Chemistry under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars. Astrophysical Journal, 2021, 906, 44.	4.5	10
3	Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nature Communications, 2021, 12, 5937.	12.8	7
4	Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nature Astronomy, 2020, 4, 97-105.	10.1	48
5	The Chemistry of Cosmic Dust Analogs from C, C ₂ , and C ₂ H ₂ in C-rich Circumstellar Envelopes. Astrophysical Journal, 2020, 895, 97.	4.5	30
6	INFRA-ICE: An ultra-high vacuum experimental station for laboratory astrochemistry. Review of Scientific Instruments, 2020, 91, 124101.	1.3	2
7	Broad-band high-resolution rotational spectroscopy for laboratory astrophysics. Astronomy and Astrophysics, 2019, 626, A34.	5.1	15
8	Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept. Astronomy and Astrophysics, 2018, 609, A15.	5.1	12
9	Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Scientific Reports, 2018, 8, 7250.	3.3	27
10	Operando monitoring the nanometric morphological evolution of TiO2 nanoparticles in a Na-ion battery. Materials Today Energy, 2018, 10, 23-27.	4.7	9
11	High-quality PVD graphene growth by fullerene decomposition on Cu foils. Carbon, 2017, 119, 535-543.	10.3	29
12	Diffusion and nucleation in multilayer growth of PTCDI-C8 studied with <i>in situ</i> X-ray growth oscillations and real-time small angle X-ray scattering. Journal of Chemical Physics, 2017, 146, 052803.	3.0	19
13	Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 43724-43732.	8.0	20
14	Manipulating the Assembly of Spray-Deposited Nanocolloids: <i>In Situ</i> Study and Monolayer Film Preparation. Langmuir, 2016, 32, 4251-4258.	3.5	30
15	Spray Deposition of Titania Films with Incorporated Crystalline Nanoparticles for Allâ€Solidâ€State Dyeâ€Sensitized Solar Cells Using P3HT. Advanced Functional Materials, 2016, 26, 1498-1506.	14.9	53
16	Morphological Degradation in Low Bandgap Polymer Solar Cells – An In Operando Study. Advanced Energy Materials, 2016, 6, 1600712.	19.5	47
17	Variation of poly(vinylidene fluoride) morphology due to radial cold flow in a flexible pipe. Polymer Engineering and Science, 2015, 55, 2869-2877.	3.1	3
18	Real-Time Monitoring of Morphology and Optical Properties during Sputter Deposition for Tailoring Metal–Polymer Interfaces. ACS Applied Materials & Interfaces, 2015, 7, 13547-13556.	8.0	113

GONZALO SANTORO

#	Article	IF	CITATIONS
19	Distortion of Ultrathin Photocleavable Block Copolymer Films during Photocleavage and Nanopore Formation. Langmuir, 2015, 31, 8947-8952.	3.5	14
20	Improved Power Conversion Efficiency of P3HT:PCBM Organic Solar Cells by Strong Spin–Orbit Couplingâ€Induced Delayed Fluorescence. Advanced Energy Materials, 2015, 5, 1401770.	19.5	78
21	Advanced Vibrational Microspectroscopic Study of Conformational Changes within a Craze in Poly(ethylene terephthalate). Macromolecules, 2015, 48, 1162-1168.	4.8	5
22	Following the Island Growth in Real Time: Ag Nanocluster Layer on Alq3 Thin Film. Journal of Physical Chemistry C, 2015, 119, 4406-4413.	3.1	16
23	Patterned Diblock Co-Polymer Thin Films as Templates for Advanced Anisotropic Metal Nanostructures. ACS Applied Materials & Interfaces, 2015, 7, 12470-12477.	8.0	63
24	Laser-ablated titania nanoparticles for aqueous processed hybrid solar cells. Nanoscale, 2015, 7, 2900-2904.	5.6	21
25	Arrangement of Maghemite Nanoparticles via Wet Chemical Self-Assembly in PS- <i>b</i> -PNIPAM Diblock Copolymer Films. ACS Applied Materials & Interfaces, 2015, 7, 13080-13091.	8.0	26
26	Colloidal Nanoparticle Interaction Transition during Solvent Evaporation Investigated by in-Situ Small-Angle X-ray Scattering. Langmuir, 2015, 31, 4612-4618.	3.5	24
27	Tracking Structural Changes in Lipid-based Multicomponent Food Materials due to Oil Migration by Microfocus Small-Angle X-ray Scattering. ACS Applied Materials & Interfaces, 2015, 7, 9929-9936.	8.0	29
28	Sorption of Water and Initial Stages of Swelling of Thin PNIPAM Films Using in Situ GISAXS Microfluidics. Langmuir, 2015, 31, 9619-9627.	3.5	11
29	Analysis of island shape evolution from diffuse x-ray scattering of organic thin films and implications for growth. Physical Review B, 2014, 90, .	3.2	18
30	Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering. Science and Technology of Advanced Materials, 2014, 15, 015004.	6.1	6
31	Use of intermediate focus for grazing incidence small and wide angle x-ray scattering experiments at the beamline P03 of PETRA III, DESY. Review of Scientific Instruments, 2014, 85, 043901.	1.3	40
32	Time resolved growth of membrane stabilized silver NPs and their catalytic activity. RSC Advances, 2014, 4, 59379-59386.	3.6	15
33	Microfocus X-ray scattering and micro-Raman spectroscopy: Transcrystallinity in isotactic polypropylene. Physica Status Solidi - Rapid Research Letters, 2014, 8, 724-727.	2.4	6
34	Following initial changes in nanoparticle films under laminar flow conditions with in situ GISAXS microfluidics. RSC Advances, 2014, 4, 1476-1479.	3.6	10
35	Silver substrates for surface enhanced Raman scattering: Correlation between nanostructure and Raman scattering enhancement. Applied Physics Letters, 2014, 104, 243107.	3.3	103
36	Probing evaporation induced assembly across a drying colloidal droplet using in situ small-angle X-ray scattering at the synchrotron source. Soft Matter, 2014, 10, 1621.	2.7	37

GONZALO SANTORO

#	Article	IF	CITATIONS
37	Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nature Communications, 2014, 5, 4018.	12.8	402
38	Fabrication and characterization of combined metallic nanogratings and ITO electrodes for organic photovoltaic cells. Microelectronic Engineering, 2014, 119, 122-126.	2.4	14
39	Molecular Reorientation and Structural Changes in Cosolvent-Treated Highly Conductive PEDOT:PSS Electrodes for Flexible Indium Tin Oxide-Free Organic Electronics. Journal of Physical Chemistry C, 2014, 118, 13598-13606.	3.1	128
40	In Situ Grazing Incidence Small-Angle X-ray Scattering Investigation of Polystyrene Nanoparticle Spray Deposition onto Silicon. Langmuir, 2013, 29, 11260-11266.	3.5	19
41	A Direct Evidence of Morphological Degradation on a Nanometer Scale in Polymer Solar Cells. Advanced Materials, 2013, 25, 6760-6764.	21.0	176
42	A new highly automated sputter equipment for <i>in situ</i> investigation of deposition processes with synchrotron radiation. Review of Scientific Instruments, 2013, 84, 043901.	1.3	24
43	Formation of Al Nanostructures on Alq3: An in Situ Grazing Incidence Small Angle X-ray Scattering Study during Radio Frequency Sputter Deposition. Journal of Physical Chemistry Letters, 2013, 4, 3170-3175.	4.6	36
44	Polarization-modulated synchrotron infrared microspectroscopy for the study of crystalline morphology in some semicrystalline polyolefins. Journal of Physics: Conference Series, 2012, 359, 012005.	0.4	4
45	The crystallization of polypropylene in multiwall carbon nanotubeâ€based composites. Polymer Composites, 2011, 32, 324-333.	4.6	34
46	Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials. Review of Scientific Instruments, 2011, 82, 033710.	1.3	13
47	Synchrotron IR microspectroscopy: Opportunities in polymer science. IOP Conference Series: Materials Science and Engineering, 2010, 14, 012019.	0.6	7
48	Study of the crosslink density, dynamo-mechanical behaviour and microstructure of hot and cold SBR vulcanizates. Journal of Polymer Research, 2010, 17, 99-107.	2.4	21
49	A Solventâ€Free Dispersion Method for the Preparation of PET/MWCNT Composites. Macromolecular Materials and Engineering, 2010, 295, 652-659.	3.6	16
50	Grazing Incidence Small Angle X-Ray Scattering as a Tool for In- Situ Time-Resolved Studies. , 0, , .		1
51	Structure, stability and optical absorption spectra of small TinCx clusters: a first-principles approach. Monthly Notices of the Royal Astronomical Society. 0,	4.4	6