Kai-Kai Chi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9455882/publications.pdf

Version: 2024-02-01

82	1,083	19	29
papers	citations	h-index	g-index
82	82	82	983
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Energy Management for Secure Transmission in Wireless Powered Communication Networks. IEEE Internet of Things Journal, 2022, 9, 1171-1181.	5.5	22
2	Mobile Two-Way Molecular Communication via Diffusion Using Amplify-and-Forward and Analog Network Coding. IEEE Transactions on Nanobioscience, 2022, 21, 273-285.	2.2	1
3	Human Complex Activity Recognition With Sensor Data Using Multiple Features. IEEE Sensors Journal, 2022, 22, 757-775.	2.4	12
4	Energy provision minimization of energy-harvesting cognitive radio networks with minimal throughput demands. Computer Networks, 2022, 204, 108721.	3.2	7
5	Joint Optimizations of Relays Locations and Decision Threshold for Multi-Hop Diffusive Mobile Molecular Communication With Drift. IEEE Transactions on Nanobioscience, 2022, 21, 454-465.	2.2	7
6	Efficient Offloading for Minimizing Task Computation Delay of NOMA-Based Multiaccess Edge Computing. IEEE Transactions on Communications, 2022, 70, 3186-3203.	4.9	80
7	DRL based offloading of industrial IoT applications in wireless powered mobile edge computing. IET Communications, 2022, 16, 951-962.	1.5	7
8	Deep reinforcement learning based scheduling for minimizing age of information in wireless powered sensor networks. Computer Communications, 2022, 191, 1-10.	3.1	6
9	DDPG-Based Throughput Optimization with Aol Constraint in Ambient Backscatter-Assisted Overlay CRN. Sensors, 2022, 22, 3262.	2.1	1
10	Optimization of Decision Thresholds in Two-Way Molecular Communication via Diffusion With Network Coding. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2022, 8, 249-262.	1.4	1
11	Throughput Guarantees for Multi-Cell Wireless Powered Communication Networks With Non-Orthogonal Multiple Access. IEEE Transactions on Vehicular Technology, 2022, 71, 12104-12116.	3.9	31
12	DRL-Based Partial Offloading for Maximizing Sum Computation Rate of Wireless Powered Mobile Edge Computing Network. IEEE Transactions on Wireless Communications, 2022, 21, 10934-10948.	6.1	45
13	DRL based partial offloading for maximizing sum computation rate of FDMA-based wireless powered mobile edge computing. Computer Networks, 2022, 214, 109158.	3.2	3
14	Optimizing Superframe and Data Buffer to Achieve Maximum Throughput for 802.15.4-Based Energy Harvesting Wireless Sensor Networks. IEEE Internet of Things Journal, 2021, 8, 3689-3704.	5.5	5
15	Channel Resource Scheduling for Stringent Demand of Emergency Data Transmission in WBANs. IEEE Transactions on Wireless Communications, 2021, 20, 2341-2352.	6.1	18
16	Video multimodal emotion recognition based on Bi-GRU and attention fusion. Multimedia Tools and Applications, 2021, 80, 8213-8240.	2.6	26
17	Quick Convex Hull-Based Rendezvous Planning for Delay-Harsh Mobile Data Gathering in Disjoint Sensor Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 3844-3854.	5.9	43
18	A Novel Grant-Based Pilot Access Scheme for Crowded Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 11111-11115.	3.9	6

#	Article	IF	Citations
19	Throughput Maximization of Wireless-Powered Communication Networks: An Energy Threshold Approach. IEEE Transactions on Vehicular Technology, 2021, 70, 1292-1306.	3.9	16
20	INSIGHT: An AR-Enabled User Interface for Vision-Based Markerless Interaction with IoT Nodes., 2021,,.		1
21	Optimal time allocation for throughput maximization in backscatter assisted wireless powered communication networks. IET Communications, 2021, 15, 1620-1631.	1.5	O
22	A hybrid CNN and BLSTM network for human complex activity recognition with multi-feature fusion. Multimedia Tools and Applications, 2021, 80, 36159-36182.	2.6	6
23	Resources optimization for secure transmission in wireless powered communication networks. Computer Communications, 2021, 179, 82-91.	3.1	0
24	Secrecy Performance Maximization for Underlay CR Networks with an Energy Harvesting Jammer. Sensors, 2021, 21, 8198.	2.1	3
25	Cost Effective Directional Barrier Construction Based on Zooming and United Probabilistic Detection. IEEE Transactions on Mobile Computing, 2020, 19, 1555-1569.	3.9	11
26	Total Throughput Maximization of Cooperative Cognitive Radio Networks With Energy Harvesting. IEEE Transactions on Wireless Communications, 2020, 19, 533-546.	6.1	35
27	Minimization of Transmission Completion Time in UAV-Enabled Wireless Powered Communication Networks. IEEE Internet of Things Journal, 2020, 7, 1245-1259.	5. 5	34
28	Energy efficiency analysis of multi-hop mobile diffusive molecular communication. Nano Communication Networks, 2020, 26, 100313.	1.6	3
29	Impact of Battery Charging on Spectrum Sensing of CRN With Energy Harvesting. IEEE Transactions on Vehicular Technology, 2020, 69, 7545-7557.	3.9	11
30	Cooperative Spectrum Sensing Optimization in Energy-Harvesting Cognitive Radio Networks. IEEE Transactions on Wireless Communications, 2020, 19, 7663-7676.	6.1	67
31	Energy-Efficient Barrier Lifetime Prolonging Scheme Based on Repairing in Directional Sensor Networks. IEEE Systems Journal, 2020, 14, 4943-4954.	2.9	3
32	Common Throughput Maximization in Wireless Powered Communication Networks With Non-Orthogonal Multiple Access. IEEE Transactions on Vehicular Technology, 2020, 69, 7692-7706.	3.9	14
33	PACE: Physically-Assisted Channel Estimation. IEEE Transactions on Wireless Communications, 2020, 19, 3769-3781.	6.1	2
34	Goodputâ€maximised data delivery scheme for batteryâ€free wireless sensor network. IET Communications, 2020, 14, 665-673.	1.5	4
35	SAR multiâ€ŧarget interactive motion recognition based on convolutional neural networks. IET Image Processing, 2020, 14, 2567-2578.	1.4	4
36	Energy provision minimisation in largeâ€scale wireless powered communication networks with throughput demand. IET Communications, 2020, 14, 458-465.	1.5	0

#	Article	IF	CITATIONS
37	Sum capacity analysis of mobile broadcast diffusive molecular communication. Nano Communication Networks, 2020, 26, 100314.	1.6	1
38	Energy Provision Minimization in Wireless Powered Communication Networks With Node Throughput Requirement. IEEE Transactions on Vehicular Technology, 2019, 68, 7057-7070.	3.9	21
39	Energy Provision Minimization in Wireless Powered Communication Networks With Network Throughput Demand: TDMA or NOMA?. IEEE Transactions on Communications, 2019, 67, 6401-6414.	4.9	48
40	Human action recognition based on HOIRM feature fusion and AP clustering BOW. PLoS ONE, 2019, 14, e0219910.	1.1	7
41	Energy model for synaptic channel in neuro-spike communication. Nano Communication Networks, 2019, 19, 102-109.	1.6	0
42	Transmit power allocation of energy transmitters for throughput maximisation in wireless powered communication networks. IET Communications, 2019, 13, 1200-1206.	1.5	6
43	Energy Storage Overflow-Aware Data Delivery Scheme for Energy Harvesting Wireless Sensor Networks. Sensors, 2019, 19, 1383.	2.1	2
44	VCEC: Velocity Control of Energy-Constrained RF-Based Wireless Charger in Sensor Networks with Multi-Depots Deployment. , 2019 , , .		1
45	Real-Time Power Control of Wireless Chargers in Battery-Free Body Area Networks. , 2019, , .		4
46	Energy-Efficient Prefix Code Based Backscatter Communication for Wirelessly Powered Networks. IEEE Wireless Communications Letters, 2019, 8, 348-351.	3.2	8
47	Two-tiered relay node placement for WSN-based home health monitoring system. Peer-to-Peer Networking and Applications, 2019, 12, 589-603.	2.6	12
48	Encoding Scheme to Reduce Energy Consumption of Delivering Data in Radio Frequency Powered Battery-Free Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 3085-3097.	3.9	25
49	Narrowband Internet of Things Systems With Opportunistic D2D Communication. IEEE Internet of Things Journal, 2018, 5, 1474-1484.	5.5	62
50	Designing prefix code to save energy for wirelessly powered wireless sensor networks. IET Communications, 2018, 12, 2137-2144.	1.5	7
51	Velocity Control of Multiple Mobile Chargers Over Moving Trajectories in RF Energy Harvesting Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 11314-11318.	3.9	16
52	Efficient data collection in wireless powered communication networks with node throughput demands. Computer Communications, 2018, 126, 1-10.	3.1	14
53	Energy-Efficient D2D Communication Based Retransmission Scheme for Reliable Multicast in Wireless Cellular Network. IEEE Access, 2018, 6, 31469-31480.	2.6	8
54	Throughput maximization in wireless powered communication networks with minimum node throughput requirement. International Journal of Communication Systems, 2018, 31, e3775.	1.6	3

#	Article	IF	Citations
55	Reliable and Energy-Efficient Data Forwarding in Industrial Wireless Sensor Networks. IEEE Systems Journal, 2017, 11, 1424-1434.	2.9	35
56	Minimization of Transmission Completion Time in Wireless Powered Communication Networks. IEEE Internet of Things Journal, 2017, 4, 1671-1683.	5 . 5	58
57	Capacity analysis for diffusive molecular communication with ISI channel. Nano Communication Networks, 2017, 13, 43-50.	1.6	12
58	Goodput optimization via dynamic frame length and charging time adaptation for backscatter communication. Peer-to-Peer Networking and Applications, 2017, 10, 440-452.	2.6	10
59	Latency Aware IPv6 Packet Delivery Scheme over IEEE 802.15.4 Based Battery-Free Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2017, 16, 1691-1704.	3.9	27
60	Using Chain of Mobile Access Gateway to Reduce Delay for PMIPv6 Protocol Applied in WLAN. Chinese Journal of Electronics, 2017, 26, 1032-1040.	0.7	0
61	Low Delay and Interference Aware Data Gathering Scheme for Battery-Free Wireless Sensor Networks. , 2016, , .		1
62	Delay-Intolerant Uplink Traffic Aware Timer-Based Power Management for Infrastructure IEEE 802.11 WLANs with Unreliable Wireless Links. , 2016, , .		0
63	Energy Conservation Scheme for IEEE 802.15.4 Based Battery-Free Wireless Sensor Networks. , 2016, , .		6
64	Coding Schemes to Minimize Energy Consumption of Communication Links in Wireless Nanosensor Networks. IEEE Internet of Things Journal, 2016, 3, 480-493.	5 . 5	10
65	A Network Coding Scheme to Improve Throughput for IEEE 802.11 WLAN. Mobile Networks and Applications, 2016, 21, 425-435.	2.2	0
66	Network Coding-Based Reliable IPv6 Packet Delivery Over IEEE 802.15.4 Wireless Personal Area Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 2219-2230.	3.9	17
67	Network coding based on hyperâ€edge decomposition for wireless network with link failures. International Journal of Communication Systems, 2015, 28, 1387-1399.	1.6	3
68	Borrowing address from two-hop neighbor to improve successful probability of joining IEEE 802.15.5-based mesh wireless sensor networks., 2015,,.		1
69	RF-Based Charger Placement for Duty Cycle Guarantee in Battery-Free Sensor Networks. IEEE Communications Letters, 2015, 19, 1802-1805.	2.5	32
70	Node recovery schemes for minimizing repair time in distributed storage system with network coding. , 2014, , .		0
71	Practical throughput analysis for two-hop wireless network coding. Computer Networks, 2014, 60, 101-114.	3.2	6
72	A network coding scheme to improve throughput for IEEE 802.11 WLAN., 2014,,.		1

#	Article	IF	CITATIONS
73	Throughput analysis of two-hop wireless networks with network coding. Journal of Electronics, 2013, 30, 166-174.	0.2	1
74	Optimal coding for transmission energy minimization in wireless nanosensor networks. Nano Communication Networks, 2013, 4, 120-130.	1.6	39
75	Energy optimal coding for wireless nanosensor networks. , 2013, , .		1
76	Network coding gain estimation for reliable multicast in wireless networks. , 2012, , .		0
77	Optimal packet fragmentation scheme for reliable and energy-efficient packet delivery in 6LoWPAN., 2012,,.		1
78	Secure network coding based on homomorpuic signature against pollution attacks. , 2012, , .		2
79	Network Coding Based Mesh-Under Routing In 6LoWPAN with High End-to-End Packet Delivery Rate. , 2012, , .		5
80	Accumulating error-free frame blocks to improve throughput for IEEE 802.11-based WLAN. Journal of Network and Computer Applications, 2012, 35, 743-752.	5.8	12
81	Flow-oriented network coding architecture for multihop wireless networks. Computer Networks, 2011, 55, 2425-2442.	3.2	4
82	Joint Design of Network Coding and Transmission Rate Selection for Multihop Wireless Networks. IEEE Transactions on Vehicular Technology, 2010, 59, 2435-2444.	3.9	19